
Vision, Modeling, and Visualization (2022)
J. Bender, M. Botsch, and D. Keim (Eds.)

Clasping Trees - A Pipeline for Interactive Procedural Tree
Generation

Simon J. Lieb1 , Nicolas Klee2 and Kai Lawonn1

1Friedrich Schiller University Jena, Germany
2Ubisoft Blue Byte Düsseldorf, Germany

Figure 1: A tree growing on a cliff, procedurally generated with our pipeline.

Abstract

Trees in computer games are important components of an immersive game world. Realistic trees adapt to the environment in
terms of shape and growth. Manually adapting each tree to its immediate environment is time-consuming. Hence, we present a
pipeline to procedurally generate trees. This pipeline’s input consists of tree-parameters and mesh sets. Tree-parameters have
a direct influence on the final appearance of the tree. Meshes are used to indicate the space of the tree crown and surface for
roots. We provide an overview of the necessary methods for procedural tree generation. Our method allows game developers to
integrate the pipeline directly into their game engine, skipping the process of importing and maintaining external 3D-models.
We used the Space Colonization Algorithm to generate roots of trees on the surface of a set of meshes. For the crown generation,
we use an extended Space Colonization Algorithm called Self Organizing Trees. To receive the combined surface and volume of
a set of meshes, we voxelize the individual mesh and compose it into a single voxel grid. We introduce two novel optimization
methods to further increase the usability of the generated trees. These optimization methods decrease the necessary triangle
count of the final mesh. The resulting trees can be used for real-life applications, such as games.

CCS Concepts
• Computing methodologies → Mesh models; Mesh geometry models;

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0002-3574-5374
https://orcid.org/0000-0002-1511-4022


S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

1. Introduction

Automated game content creation is firmly anchored in modern
game development. By employing procedural generation, entire
game worlds with mountains, rivers, and forests can be created au-
tomatically.

The procedural generation of vegetation is still of interest in cur-
rent research. The growth of a plant is highly dependent on its en-
vironment. Surrounding objects can be obstacles and influence the
shape of a tree. Roots can wrap around objects, and objects that
cast shadows affect the growth of plants by the availability of light.
The realization of these properties in computer games leads to an
immersive design of scenes. Therefore, special attention is paid to
the adaptation of the local environment.

We created a complete pipeline for vegetation generation. The
pipeline includes methods for the generation of abstract tree struc-
tures, the automatic generation of the corresponding mesh and its
UV map, which is necessary for texturing objects. For the abstract
tree structure generation, several methods from literature are com-
bined and slightly modified to be usable in the pipeline.

To achieve better performance, we introduce two optimization
methods to reduce the number of triangles created. Thus, we give
users the ability to set the level of detail of the resulting tree. Ad-
justing the level of detail is important for game development since,
besides visual conviction, performance is necessary for real-time
applications.

In summary, we make the following contributions:

• We use voxelization to calculate the surface of combined
meshes, to generate roots on it.

• We introduce two optimization methods during the generation to
reduce the polygon count of the 3D object.

• We provide tree-parameter settings for an implementation of the
pipeline.

2. Related Work

Computational plant generation originates in recursive relations.
Ulam et al. [Ula62] hinted tree-like structures in recursive patterns.
Honda [Hon71] described the effect of different branching angles
and branch ratios using recursive branching patterns. Later, Lin-
denmayer and Prusinkiewicz [PL90] gave a large set of tools for
generating plants. They used a formal grammar to dynamically im-
plement recursive formulas. These tools of grammar-based systems
are later called L-systems.

In contrast to rule based recursive approaches, simulation-based
approaches exist. Particle flow, introduced by Rodkaew et al.
[RCSL03], simulates an intrinsic energy transportation system
within a plant, using particles. Kohek and Strnad [KS18] used par-
ticle flow to generate large forests on a GPU directly.

Another simulation-based and intuitive way to generate tree
skeletons is using the Space Colonization Algorithm (SCA), in-
troduced by Runions et al. [RLP07]. The main difference to the
particle flow method is a top-down approach. Instead of particles
flowing from the root to the leaves, space indicators, called at-
traction points, form the final shape of the tree. Attraction points

represent free space and light, indicating the direction of the tree
growth. At the beginning of SCA, a set of attraction points is gen-
erated. The iterative algorithm is divided into two phases: first, tree
nodes are added to the tree skeleton corresponding to the remain-
ing attraction points. Secondly, attraction points are deleted if they
are reached. A detailed description can be found in the work by
Runions et al. [RLP07], Palubicki et al. [PHL*09], and Nuić and
Mihajlović [NM19].

Palubicki et al. [PHL*09] extended the idea of SCA by adding
biological components like phyllotaxis, the concept of buds and
shadow propagation. Their approach simulates internal signaling
mechanisms to realistically generate vegetation and is used for im-
age synthesis.

All the works mentioned use abstract tree graphs as a base rep-
resentation. On these graphs, further operations and computations
can be performed well, because these graphs form simple math-
ematical representations of the actual trees. Pirk et al. [PNH*14]
used pre-generated tree graphs to perform wind operations and in-
teractive modeling [PSK*12]. Strnad et al. [SKNŽ19] developed an
efficient way to store tree-graphs. Their work can be used if there
is the necessity to store the tree-graphs itself, rather than the final
3D object.

For generating tree-like meshes, two main approaches exist. Zhu
et al. [ZJY15] used convolution surfaces to generate smooth ramifi-
cations. Convolution surfaces are generated by creating isosurfaces
on a field of scalar values, based on the distance to tree nodes and
internodes. Another approach is to use a combination of primitive
meshes, such as cylinders. Lluch et al. [LVM04] designed a model
to handle ramifications geometrically. Zhang et al. [ZBM*17] pre-
sented a method to generate LOD (Level Of Detail) models specif-
ically for tree branches. Nuić and Mihajlović [NM19] presented a
geometric method to smooth branches using Bézier curves. Within
their work, Nuić and Mihajlović also show that SCA has a good
balance between customizability and performance, and is therefore
used as a base concept in our work.

For voxelization, we consider two approaches with different ease
of implementation. Thon et al. [TGR04] developed a basic solution
to voxelize the volume of meshes. Although the method is not the
fastest, it can be used very well for quick implementation. How-
ever, Schwarz and Seidel [SS10] presented a fast method to vox-
elize both the surface and volume of meshes.

3. Tree Graph Generation

To generate a 3D-tree object, we first need to construct an ab-
stract graph representing the tree as a tree skeleton. Palubicki et al.
[PHL*09] introduced self-organizing trees that extend SCA with
more complex buds. These buds adapt the biological concept of
actual buds, which trees form at each branch end. We use the ter-
minology as in [PHL*09]. Also, we use occupancy radius synony-
mous to kill distance, as well as perception radius synonymous to
influence distance.

The root growth is terminated by endogenous influences, while
shoot growth is influenced by external factors such as light [Bec10].
Due to the differences in root and shoot growth, we use different

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

algorithms to generate each. For roots, we use SCA, since we do
not include other influences than the available space and ignore the
bud development of roots. For the shoots and tree crown, we use
the self-organizing tree method with some adjustments, as we do
not include the bud fate, described by Palubicki et al. [PHL*09], to
save computation time.

The main idea of SCA and self-organizing trees is to generate
a tree skeleton by reaching previously scattered attraction points.
Attraction points indicate free space and light. During the iterative
process, branches are added to the existing graph in the direction of
nearby attraction points.

Each tree skeleton node represents a bud. A bud B is charac-
terized by the following properties. B has a position and an initial
growing direction. It has a perception volume that is defined as a
spherical cone having its tip at the bud’s position and its central
axis aligned with the bud’s growing direction. The length of the
central axis of the perception volume is given by the attribute per-
ception radius. We call the apex angle of the spherical cone the
perception angle ω. With a wider perception angle, the bud is able
to perceive more attraction points that are averted from the bud’s
growing direction, resulting in a less uniform and more unstruc-
tured growth. Again, the adjustment is crucial since setting ω too
low leads to a low probability that attraction points are perceived at
all. A too-large value subverts the effect of lateral bud positioning
and growth control. Palubicki et al. [PHL*09] suggest a value of
90°, which we use as a preset. Yet, other values are also possible
and can be changed by the user, as discussed later (see Figure 8).

Attraction points that lie within the perception volume of B are
taken into account for the calculation of the final growing direction.
If an attraction point lies within the perception volumes of two dif-
ferent buds, it is assigned to the bud with the smaller distance.

Besides the inner construction of a bud, self-organizing trees dif-
fer between buds. We distinguish two types of buds: terminal buds
and lateral buds. The initial growing direction of terminal buds
maintain the parent bud’s final growing direction. Lateral buds sit
in the same position as the terminal bud, but their direction is de-
termined by attributes branching angle β and phyllotaxis ϕ. The
branching angle β is the angle between the initial growing direction
of the lateral bud and its corresponding terminal bud. Phyllotaxis ϕ

is the rotation angle of the lateral bud direction around the terminal
bud direction. While growing, the lateral bud rotation ϕ is calcu-
lated by adding a global phyllotaxis value to the previous lateral
bud. The phyllotaxis defines the arrangement of leaves. Angles of
90° and 180° appear very frequently in nature. However, spiral an-
gles that are not dividers of 360 also occur in nature. The angle of
spiral forms is often 137.5°, corresponding to the golden ratio. The
specific reason for the formation of different phyllotaxis patterns is
unknown; see Okabe et al. [OIY19].

Two successive terminal buds form an internode that is later used
to generate the mesh. The distance between terminal buds is the
internode length which is set globally.

Child buds lie in the direction of the final growing direction of a
bud multiplied by the internode length. The final growing directions
of lateral and terminal buds are the normalized weighted average of
the initial growing direction and the direction to the center point of

the associated attraction points. The weight µ ∈ [0,1] represents an
inertia of the growing direction, where a high weight in favor of the
initial growing direction results in a high inertia.

We combine terminal buds, lateral buds, and internodes into
metamers. A metamer is an internode, having a terminal and one
or more lateral buds at its end. Both, lateral and terminal buds, can
produce a metamer (see Figure 2).

dterminal

dlateral

internode

ϕ β

perception volume

perception angle

perception radius

bud

Figure 2: Visualization of a metamer. dterminal and dlateral show
the initial growing direction of the terminal and lateral bud. The
position of the buds is indicated as a blue dot. β is the branching
angle and ϕ the phyllotaxis. The perception volume is shown in
light blue. The perception volume of the lateral bud was omitted
for clarity. Perception radius and perception angle are shown as
parameters of the perception volume. The internode is indicated as
a connection between two successive terminal buds.

Buds are deactivated after their processing. Therefore, a bud has
a maximum of one internode. In contrast, the amount of generated
internodes at a tree node of SCA is unlimited. Branching is made
possible by the fact that each metamer contains at least two buds.

After the growth process within an iteration step, attraction
points are sorted out. We delete an attraction point, if there is a
bud whose distance is less than the occupancy radius.

The diameter is calculated for each bud using a post-order traver-
sal through the tree skeleton. As suggested by Minamino and
Tateno [MT14], the diameter bdia of each bud b is then calculated
using the set Bchildren, containing all child-buds of b using

bdia = x

√
∑

c∈Bchildren

cx
dia, (1)

while the exponent x ∈R+ defines the thickness of the tree. The ex-
act value depends on the wished outcome or targeted plant species.
However, values between 1.8 and 2.8 seem reasonable. Diameters
of buds with no child buds are set to 1. The branch diameter is
linearly interpolated between two successive buds.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

A result using the presented method together with the root gen-
eration can be seen in Figure 1. Here, the corresponding 3D model
has also been generated by using the tree skeleton.

4. 3D Model Generation

To produce a 3D model of a tree, we visualize the previously gen-
erated tree skeleton. The tree skeleton does not necessarily need to
be generated by this pipeline. A tree object is constructed by gen-
erating mesh tubes for each internode. Besides that, we use quads
for the foliage. The presented method is valid for the upper part of
the tree and the roots.

4.1. Tube Generation

Branches are generated by connecting mesh tubes. Therefore, care
must be taken to ensure that these tubes have aligned transitions.
In addition, attention must be paid to maintaining a curved appear-
ance with a minimum number of triangles concurrently. Therefore,
we first define a single cylinder. Then, we describe the calcula-
tion of the transitions between cylinders and finally the method for
smoothing branches.

4.1.1. Distorted Cylinders

The smallest section of a generated tree mesh is a distorted cylin-
der. We define it by two circles Ci with i ∈ {1,2} that lie in space
arbitrarily. Each is defined by the parameters ci as its center point,
ri as is radius, and ni as its directional vector. Directional vectors ni
are orthogonal to the circle area and define the alignment in space.
We discretize Ci with polygons Vi, containing ki vertices.

To align the assignment of points between the two circles, we
propagate a supporting vector ti for each circle. The order of as-
signment of points between the two polygons V1 and V2 is crucial,
as can be seen in Figure 3. The transition from ti to ti+1 is given by
the cylinder quaternion discussed below. We distribute the vertices
within the circles equidistantly by setting the first point to ci + ti.
The following vertices are set by successively rotating ti around ni
by the angle 2π

ki
.

(a) (b)n2 n2 n2

n1

C1

C2 V2 V2

V1 V1

n1 n1t1

t2

t2

t1

(c)

Figure 3: Example of a distorted cylinder and its mesh represen-
tation. a) The schematic cylinder with circles C1, C2 and normals
n1, n2. b) Polygons V1, V2 represent C1, C2. Vectors t1 and t2 are
rotated according to n1 and n2. The resulting mesh forms a suffi-
cient representation. c) t1 and t2 are not aligned with the rotation
of n1 and n2. The resulting mesh is twisted.

For optimization, we decrease the count of vertices for small
branches. Therefore, in some cases, the two polygons V1 and V2

have different numbers of vertices. Generally, we assume that
k1 ≥ k2, and use the surjective mapping: v2 j ∈ V2 is assigned to
v1l ∈V1, if:

j =
[

l · k2
k1

]
(2)

where [·] represents a rounding to the nearest integer. We now use
two successive tree nodes as center points and their growth direc-
tion as normals.

4.1.2. Successive Cylinders

Two successive cylinders must share the same supporting vector t
at their connecting side. Otherwise, holes would be generated be-
tween those two cylinders. It is therefore enough to calculate one
supportive vector for each cylinder, as the supporting vector of the
bottom polygon is already given by the previous cylinder. To align
two successive cylinders, a rotation is propagated through the gen-
eration process. This rotation is represented by a quaternion qi for
the i-th cylinder, starting with q0 = (0,0,0,1). In each propagation
step i, a new quaternion q′ is created, representing the rotation from
the direction of cylinder Zi to Zi+1. Then, rotation quaternion q′ is
applied to the propagated rotation qi−1, yielding the rotation qi of
the current cylinder:

qi = q′ ·qi−1. (3)

The alignment vector ti of the cylinder is then calculated by ap-
plying qi to a globally defined orthonormal vector v0 of root node
direction d0. Each bud holds its rotation quaternion to establish a
simple local rotation relation for subtrees of each bud.

4.1.3. Smoothed Tubes

For each internode of a tree graph, a mesh section has to be gen-
erated. Using just one distorted cylinder for each internode would
lead to edgy and unevenly formed branches. To tackle this prob-
lem, we use third order Bézier curves as suggested by Nuić and
Mihajlović [NM19].

Let Bn be a node of the tree graph, Bn−1 the parent node of Bn,
pn the position of Bn, dn the direction of Bn, pn−1 the position of
Bn−1, dn−1 the direction of Bn−1, and c ∈ R+ a curvature strength
factor. The cubic Bézier curve b is then defined by the set of four
control points b0,b1,b2,b3 with:

b0 = pn−1,

b1 = pn−1 +dn−1 · c,
b2 = pn −dn · c, and

b3 = pn.

(4)

Specifically, in our implementation, the calculation of b(t) is split
in two parts, b2

0(t) and b2
1(t). This setup ensures that we also get

the tangent of point b(t). We can then use the tangent to optimize
the necessary polygon count for the section between Bn−1 and Bn.
Therefore, b2

0(t) and b2
1(t) are computed by

b2
0(t) =(1− t) · ((1− t) ·b0 + t ·b1)

+ t · ((1− t) ·b1 + t ·b2), and
(5)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

b2
1(t) =(1− t) · ((1− t) ·b1 + t ·b2)

+ t · ((1− t) ·b2 + t ·b3)
(6)

Given b2
0(t) and b2

1(t), b(t) is computed by

b(t) = (1− t) ·b2
0(t)+ t ·b2

1(t). (7)

Furthermore, the normalized tangent θ is computed by

θ =
b2

1(t)−b2
0(t)

||b2
1(t)−b2

0(t)||
. (8)

For more details on Bézier curves, we refer to the book by Ger-
ald Farin [FF02]. Note that we normalize the tangent, and therefore
cancel any multiplication factor. We do this to reduce computa-
tion time during the optimization discussed below. Generating a
distorted cylinder for each point b(t) results in a high amount of
triangles in straight areas with no visible benefit. The smoothness
of the distorted cylinder depends on the step size ∆t. We introduce
an optimization to increase the triangle count only for areas with
high curvature, while maintaining a low triangle count for straight
branches and a strong smoothing with a small ∆t.

For that, we introduce the straw factor δ, which represents the
accuracy of the Bézier line fitting. We calculate b(ti) successively
with t0 = 0 and ti = ti−1 +∆t. During iteration, we keep track of
the tangent θ

′, which represents the tangent of the last generated
cylinder. For the first iteration, we set θ

′ = θ0. At each iteration step
i, we calculate the tangent θi. If θ

′ · θi ≤ δ, a distorted cylinder is
generated. Also, we set θ

′ = θi, to keep the latest relevant tangent.
This results in a cylinder being generated just at small angles (see
Figure 4). Due to its cocktail straw-like shape, we call this method
straw optimization from now on.

Figure 4: The same generated branch, a) without straw optimiza-
tion and b) with straw optimization.

If δ = 1, no straw optimization is used. Smaller values result in
less triangles but more visible edges. We have found that values for
δ between 0.98 and 1 give a convincing result. However, exact val-
ues depend on the application, specifically on the step size ∆t. For
example, low values below 0.98 could be used for low resolution
LOD objects. Furthermore, the number of triangles of the unopti-
mized model depends strongly on the density of the Bézier points.

Another optimization we propose is radius optimization, which
decreases the number of vertices representing the circles of the
tubes depending on the radii (see Figure 5). Let Dmax be the max-
imum diameter and Dmin = 1 the minimum diameter. The number

of vertices Nb for each tree node b with diameter bdia can then
gradually be decreased by using the formula

Nb =
bdia −Dmin

Dmax −Dmin
· (Nmax −3)+3 (9)

with Nmax ≥ 3 being the maximum number of vertices for the
largest diameter. Note that we add 3 as a baseline, so that the small-
est diameters still result in three vertices, to maintain a 3D-shape.

Figure 5: The same generated branch structure, a) without radius
optimization and b) with radius optimization.

4.2. Leaves and Foliage

For every bud which has not produced a metamer and where the
diameter is within 10% of the smallest diameters, a twig or leave
cluster is added. This cluster contains a plane defined by four ver-
tices with a twig texture, in which the branches converge in the cen-
ter. The alignment of the quad is based on the rotation quaternion
of the bud.

4.3. UV Mapping

The UV mapping is constructed so that the texture runs along the
branches, see Figure 6. For each distorted cylinder, radii r1 and r2,
as well as the orthonormals t1 and t2 to the terminal growing di-
rections are given. Thus, the UV mapping is done by wrapping a
rectangular coordinate field around the cylinder. Hereby, each cir-
cle is viewed independently. The UV coordinate (u,v) for the first

Figure 6: UV-mapping on an example branch. a) Test-texture to
visualize the UV mapping. b) A texture mapped accordingly.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

vertex is (0, l), where l is the total distance to the root along the tree
graph. Distance l is computed by propagating the distance during
the tree graph generation. The UV coordinate (u,v)i of vertex vi is
then computed by

(u,v)i =

(
i · r
k
, l
)
, (10)

with r being the radius of the current circle. The same applies to the
upper circle of the cylinder. The texture will not be compressed if
the radii differ since the mapping depends on r1 and r2. Although
cut edges are present in this case and at branching points, they are
barely visible if irregular textures are used.

5. Attraction Point Generation

We want to be able to define the shape of the tree. Therefore,
we take arbitrary meshes and generate the attraction points inside
them. For the crown, we use primitive meshes that represent the
area of growth. For the roots, we use meshes from the environ-
mental scene. Evenly distributed attraction points within a mesh
approximate the mesh volume. The shape of the tree adapts to the
attraction point distribution. Therefore, the tree adopts the shape of
the input meshes.

To achieve a uniform distribution of points, a mesh is divided
into voxels. Voxelizing has the following advantages: First, dis-
tributing points inside or on the surface of a mesh does not depend
on the complexity of the mesh, as long as it is voxelizable. Second,
multiple meshes can be combined into one voxel object. Here, the
inner volume consists of the union of mesh volumes.

We divide the selection of meshes into four layers. The first layer
is using primitive meshes to indicate the tree crown area. The sec-
ond layer is a selection of meshes for the root growth. Layers three
and four are selections for obstacles for the crown and root growth.
Voxels extracted from layers three and four are subtracted from the
voxel sets of layers one and two. A setup to use the different layers
can be seen in Figure 7.

Figure 7: Example of the generation process. a) The area for the
roots is selected with the blue box. b) Combined spheres are used
to set the attraction point volume for the tree trunk and crown. The
rearmost boulder is selected as a subtractive layer for the roots.

First, we voxelize all selected meshes in each layer. Then, we
successively combine the voxelized meshes with a logical ’or’ in
each layer. We get the final layers by subtracting the obstacle layers
from the crown and root layer by setting every voxel to zero if the
corresponding obstacle layer voxel has a value of 1.

The surface voxelization step for the roots is done after the gen-
eral voxelization. We compute an approximately uniform surface
distribution by using the calculated voxels. Here, the surface vox-
els are those with at least one non-occupied voxel as a neighbor
and are computet in two passes. In the first pass, each voxel that
lies within any of the input meshes is occupied. In The second pass,
only voxels that have at least one non-occupied neighbor stay occu-
pied. All other voxels become non-occupied. Meshes are combined
volumetrically during voxelization and, therefore, surfaces are also
combined as desired.

Finally, we scatter uniformly distributed attraction points within
the voxels. For each attraction point that is scattered, a random
voxel is selected and its position is then calculated by three ran-
dom numbers in the range of the voxel dimensions.

6. Experimental Results And Evaluation

We first provide values for parameters that have worked well for
us. With these values, users may implement the described methods.
After that, we present the required computation time and memory
usage of the generation methods. Thus, use cases can be derived for
users.

6.1. Parameter Determination

We suggest baseline parameters to generate high quality results.
Note that there is a significant dependency between parameters.

All length parameters must have the same reference scale size.
This scale can be chosen arbitrarily to obtain the desired tree size as
long as the relations remain invariant. In the following, we assume
an indefinite scaling size λ if no factor is given.

A fundamental parameter is the attraction point count. It de-
fines the density of a tree crown, but also the connectivity between
sparsely connected volumes. However, it depends on the mesh vol-
ume size and perception radius. We define the attraction point den-
sity APdense by

APdense =
APcount

volumeSize
. (11)

A density between 20 and 80 per λ
3 seems to be sufficient, with

a given perception radius of 0.7. If the density falls below 20, the
attraction point distribution is too sparse, i.e., the generation ends
before all attraction points have been reached. A density of more
than 80 can result in more detail, but this is disproportionate to the
higher computing time required.

Palubicki et al. [PHL*09] suggest that a perception radius of 4 to
6 times the internode length results in moderate growth. However, a
larger perception radius also works for the tree crown and requires
fewer attraction points. They also suggest the occupancy radius to
be two times the internode length, which give promising results.
Having a smaller occupancy radius leads to an increased number of
small side-shoots. Given an internode length of 0.1, an occupancy
radius of 0.15, and a perception radius of 0.7 yield realistic results
for the upper part of the tree, see 8a.

Since roots are generated on mesh surfaces, they need to be
able to adapt to more detailed structures. Thus, a smaller internode

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

Figure 8: A bush generated with five different parameter sets. First image serves as a baseline. The following images differ in one parameter
to the baseline. a) attraction points: 2000; internode length: 0.1; perception angle: 3.14; perception radius: 0.7; occupancy radius: 0.15;
phyllotaxis: 1.57; branching angle: 1.3; diameter exponent: 2.6; voxel grid resolution: 128. b) perception angle: 0.79. c) occupancy radius:
0.4. d) perception radius 2.0. e) branching angle 0.2.

length must be chosen and, therefore, more attraction points must
be scattered. Also, a smaller occupancy radius and a smaller per-
ception radius are necessary. A much higher attraction point den-
sity can be chosen for the roots because points are only generated
on the surface. With a voxel grid resolution of 2563, an attraction
point density of 300 to 600 per λ

3 is sufficient, given an internode
length of 0.09, perception radius of 0.35, and occupancy radius of
0.2. However, the tree-parameters depend highly on the detail level
of the used meshes and voxel grid resolution. We provide different
suggestions for tree-parameter configuration in Figure 8.

6.2. Performance and Memory

We measured performance for the crown and root generation sepa-
rately. Performance measurements for the skeleton and mesh gen-
eration, as well as its corresponding internode count, triangle count,
and vertex count for the crown generation can be found in Table 1
(top). The generation method for roots is SCA. Since the branches
of roots must adapt to more detailed structures, the internode length
for roots is fixed to 0.09. Also, the Perception Radius is set to 0.35.
Measurements for the root generation can be found in Table 1 (bot-
tom). All tests were done on a workstation with the following prop-
erties:

Processor Intel Xeon W-2255 @ 3.70GHz
RAM 64 GB
Graphics Card NVidia GTX 1070

When comparing the generation from the upper part of the
tree with the roots, it is noticeable that the root generation takes
much more time and generates more triangles. Obviously, a higher
amount of attraction points results in longer computation times.
However, a higher amount of attraction points is required for the
roots. At the same time, the number of internodes does not increase
significantly.

The branches on roots can grow at any node in almost any di-
rection. Thus, more angular branches are generated. Branches are
meshed with more triangles to receive a smooth curvature. There-
fore, the number of triangles of roots compared to crown growth is
higher.

The memory consumption differs between generation steps.
During the tree generation, a voxel grid is used. Since a single
voxel holds less than 8 booleans, its memory consumption is ap-
proximately 1 byte. The overhead, i.e., the voxel grid’s position

Table 1: Internode count (Interns.), triangle count (Tris.) and ver-
tex count (Verts.) depending on the attraction point count (APs) for
the crown (top) and root (bottom) generation. Entries in columns
Skeleton and Mesh represent the generation process time in mil-
liseconds. Values represent the average of each set of generated
samples. Note that pure SCA is used to generate the roots.

APs Interns. Tris. Verts. Skeleton Mesh
Internode length: 0.2, crown generation

500 678.3 49922 28633 13.5 ms 12.7 ms
1000 1161.0 86728 49837 35.3 ms 13.8 ms
1500 1503.7 111030 63839 52.8 ms 28.2 ms
2000 1817.7 129842 74793 86.8 ms 24.0 ms
2500 2068.7 144776 83462 76.7 ms 32.2 ms

Internode length: 0.09, root generation
2000 842.0 138621 75599 67.6 ms 18.8 ms
3000 1403 436928 236666 239.9 ms 89.8 ms
4000 616.3 351552 190463 328.3 ms 64.3 ms
5000 627.3 383616 207831 467.7 ms 60.6 ms
6000 660 408761 221438 526.0 ms 90.7 ms

and size, is negligible. Therefore, a voxel grid with a resolution of
2563 results in a 16,8 megabytes data set. Nevertheless, optimizing
the memory consumption of the used voxel grid is part of future
work.

The permanent memory consumption consists of two parts. The
first part is the tree skeleton, containing all the information about
the tree structure. The second part is the 3D model, containing ver-
tices, normals, triangles, and UV coordinates. Keeping one of the
two is sufficient to store the results since the 3D model is con-
structed from the tree skeleton. However, additional calculations
can be performed on the tree skeleton, i.e., wind [PNH*14], or in-
teractivity [PSK*12]. Hence, we analyze the corresponding mem-
ory consumption.

6.2.1. Tree Skeleton Generation

The memory size can be determined by using the size of a single
node. The attributes isTerminal (bool), diameter (float), parentN-
ode (pointer), position (float[3]), rotation (float[4]) and childNodes
(on average one pointer) sum up to 49 bytes. Using C++, the size
expands to 52 bytes due to structural padding. Table 1 indicates an
internode count between 600 and 2100 for the upper part and 600

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. J. Lieb, N. Klee & K. Lawonn / Clasping Trees

to 1500 nodes for the roots, highly depending on the real genera-
tion situation. With an overall node count of 1200 to 5000 nodes,
the memory consumption sums up to roughly 62 to 260 kilobytes.
Additionally, a constant overhead of tree parameters is stored.

6.2.2. 3D-Model Generation

The tree model can be stored in a simple mesh. This mesh contains
a list of vertices, normals, triangle indices, and UV coordinates.
The additional overhead caused by the specific implementation in
the 3D environment is ignored.

Vertices and normals are stored in 12-byte float[3] each. Trian-
gle indices must be stored as 4-byte integers since there are more
than 216 vertices to be addressed. UV coordinates are stored as 8-
byte float[2]. Vertices, normals, and UV coordinates have the same
number of elements and can be combined into 32 bytes per ele-
ment. For each triangle, three indices are stored, adding up to 12
bytes per triangle.

Since vertices are reused while indexing the triangles, the aver-
age ratio of vertices to triangles is approximately between 27

50 to
29
50 . The overall vertex and triangle count of the 3D model of a tree
based on the performance measurements ranges from roughly 100
thousand vertices and 190 thousand triangles up to 320 thousand
vertices and 580 thousand triangles. The memory size ranges from
5480 kilobytes to 17200 kilobytes accordingly. However, this de-
scribes only the raw size of the data.

7. Conclusions And Future Work

We introduced a complete pipeline to generate trees by setting pa-
rameters and input meshes. Two types of input meshes lead to the
adaption to the tree’s direct environment. The first type indicates
free space for the tree crown. The second type indicates obstacles
around which the roots must grow. This allows trees and bushes to
better integrate with the rest of the scene. Suggestions for param-
eters for implementing our results were given and the results were
evaluated by performance and memory consumption.

To take the surface of surrounding meshes into account, we used
a basic voxelization method. The approximation of the mesh sur-
face by voxelization and the subsequent generation of roots shows
promising results. A faster method, like presented by Schwarz and
Seidel [SS10], would provide a higher level of detail.

The resulting tree skeletons can be visualized with the presented
meshing method. Straw optimization and radius optimization re-
duce the number of necessary triangles. This optimization can be
used to create different LOD-levels during the generation process.

Because the generated trees look convincing, while the vertex
count is kept low, we believe the generation pipeline can be im-
plemented and used in game engines. The ability to customize the
appearance by adjusting the tree-parameters also improves the us-
ability as an interactive tool.

References
[Bec10] BECK, CHARLES B. An introduction to plant structure and devel-

opment: plant anatomy for the twenty-first century. Cambridge Univer-
sity Press, 2010. Chap. 16, 279–321 2.

[FF02] FARIN, GERALD E and FARIN, GERALD. Curves and surfaces for
CAGD: a practical guide. Morgan Kaufmann, 2002. Chap. 5,6 5.

[Hon71] HONDA, HISAO. “Description of the form of trees by the param-
eters of the tree-like body: Effects of the branching angle and the branch
length on the shape of the tree-like body”. Journal of theoretical biology
31.2 (1971), 331–338 2.

[KS18] KOHEK, ŠTEFAN and STRNAD, DAMJAN. “Interactive Large-
Scale Procedural Forest Construction and Visualization Based on Par-
ticle Flow Simulation”. Computer Graphics Forum. Vol. 37. 1. Wiley
Online Library. 2018, 389–402 2.

[LVM04] LLUCH, JAVIER, VIVÓ, ROBERTO, and MONSERRAT, CARLOS.
“Modelling tree structures using a single polygonal mesh”. Graphical
Models 66.2 (2004), 89–101 2.

[MT14] MINAMINO, RYOKO and TATENO, MASAKI. “Tree branching:
Leonardo da Vinci’s rule versus biomechanical models”. PloS one 9.4
(2014), e93535 3.

[NM19] NUIĆ, H and MIHAJLOVIĆ, Ž. “Algorithms for procedural gener-
ation and display of trees”. 2019 42nd International Convention on In-
formation and Communication Technology, Electronics and Microelec-
tronics (MIPRO). IEEE. 2019, 230–235 2, 4.

[OIY19] OKABE, TAKUYA, ISHIDA, ATSUSHI, and YOSHIMURA, JIN.
“The unified rule of phyllotaxis explaining both spiral and non-
spiral arrangements”. Journal of the Royal Society Interface 16.151
(2019), 20180850 3.

[PHL*09] PALUBICKI, WOJCIECH, HOREL, KIPP, LONGAY, STEVEN, et
al. “Self-organizing tree models for image synthesis”. ACM Transactions
on Graphics (TOG) 28.3 (2009), 1–10 2, 3, 6.

[PL90] PRUSINKIEWICZ, PRZEMYSLAW and LINDENMAYER, ARISTID.
The algorithmic beauty of plants. Springer, New York, 1990 2.

[PNH*14] PIRK, SÖREN, NIESE, TILL, HÄDRICH, TORSTEN, et al.
“Windy trees: computing stress response for developmental tree mod-
els”. ACM Transactions on Graphics (TOG) 33.6 (2014), 1–11 2, 7.

[PSK*12] PIRK, SÖREN, STAVA, ONDREJ, KRATT, JULIAN, et al. “Plas-
tic trees: interactive self-adapting botanical tree models”. ACM Transac-
tions on Graphics (TOG) 31.4 (2012), 1–10 2, 7.

[RCSL03] RODKAEW, YODTHONG, CHONGSTITVATANA, PRABHAS,
SIRIPANT, SUCHADA, and LURSINSAP, CHIDCHANOK. “Particle sys-
tems for plant modeling”. Plant growth modeling and applications. Pro-
ceedings of PMA03, Hu B.-G., Jaeger M.,(Eds.). Tsinghua University
Press and Springer, Beijing (2003), 210–217 2.

[RLP07] RUNIONS, ADAM, LANE, BRENDAN, and PRUSINKIEWICZ,
PRZEMYSLAW. “Modeling Trees with a Space Colonization Algorithm.”
NPH 7 (2007), 63–70 2.

[SKNŽ19] STRNAD, DAMJAN, KOHEK, ŠTEFAN, NERAT, ANDREJ, and
ŽALIK, BORUT. “Efficient Representation of Geometric Tree Models
with Level-of-Detail Using Compressed 3D Chain Code”. IEEE trans-
actions on visualization and computer graphics 26.11 (2019), 3177–
3188 2.

[SS10] SCHWARZ, MICHAEL and SEIDEL, HANS-PETER. “Fast parallel
surface and solid voxelization on GPUs”. ACM transactions on graphics
(TOG) 29.6 (2010), 1–10 2, 8.

[TGR04] THON, SÉBASTIEN, GESQUIÈRE, GILLES, and RAFFIN, RO-
MAIN. “A low cost antialiased space filled voxelization of polygonal ob-
jects”. GraphiCon 2004 (2004), 71–78 2.

[Ula62] ULAM, STANISLAW. “On some mathematical problems connected
with patterns of growth of figures”. Proceedings of Symposia in Applied
Mathematics. Vol. 14. Am. Math. Soc. Vol. 14, Providence. 1962, 215–
224 2.

[ZBM*17] ZHANG, XIAOPENG, BAO, GUANBO, MENG, WEILIANG, et
al. “Tree branch level of detail models for forest navigation”. Computer
Graphics Forum. Vol. 36. 8. Wiley Online Library. 2017, 402–417 2.

[ZJY15] ZHU, XIAOQIANG, JIN, XIAOGANG, and YOU, LIHUA. “High-
quality tree structures modelling using local convolution surface approx-
imation”. The Visual Computer 31.1 (2015), 69–82 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.


