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Figure 1: From an input mesh representing the surface of a vessel, our algorithm detects and segments the aneurysms in the vessel. Afterwards,
a report is generated including meta information on the patient as well as summaries of characteristics of the aneurysms, e.g., their widths

and heights.

Abstract

We present a method for detecting and segmenting aneurysms in blood vessels that facilitates the assessment of risks associated
with the aneurysms. The detection and analysis of aneurysms is important for medical diagnosis as aneurysms bear the risk of
rupture with fatal consequences for the patient. For risk assessment and treatment planning, morphological descriptors, such as
the height and width of the aneurysm, are used. Our system enables the fast detection, segmentation and analysis of single and
multiple aneurysms. The method proceeds in two stages plus an optional third stage in which the user interacts with the system.
First, a set of aneurysm candidate regions is created by segmenting regions of the vessels. Second, the aneurysms are detected
by a classification of the candidates. The third stage allows users to adjust and correct the result of the previous stages using
a brushing interface. When the segmentation of the aneurysm is complete, the corresponding ostium curves and morphological
descriptors are computed and a report including the results of the analysis and renderings of the aneurysms is generated. The
novelty of our approach lies in combining an analytic characterization of aneurysms and vessels to generate a list of candidate
regions with a classifier trained on data to identify the aneurysms in the candidate list. The candidate generation is modeled
as a global combinatorial optimization problem that is based on a local geometric characterization of aneurysms and vessels
and can be efficiently solved using a graph cut algorithm. For the aneurysm classification scheme, we identified four suitable
features and modeled appropriate training data. An important aspect of our approach is that the resulting system is fast enough
to allow for user interaction with the global optimization by specifying additional constraints via a brushing interface.

1. Introduction

Aneurysms are abnormal weak areas in the walls of blood ves-
sels that can bulge out and balloon. They bear the risk of rupture,
which leads to a subarachnoid hemorrhage (SAH) causing high
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risks of mortality. Though most aneurysms will never rupture, the
potential risk of a SAH makes the detection and risk-assessment
of aneurysms an important issue. Imaging methods are used for
the detection and localization of aneurysms. Decisions on whether
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or not to treat aneurysms have to be taken carefully as interven-
tions bear the danger of a fatal outcome [CVS™*15]. In clinical rou-
tine, the risk assessment and treatment planning are based on the
aneurysm’s size and location, where aneurysms larger than 7 mm
are usually treated. Physicians manually extract the aneurysm’s
size either using the acquired image data or a surface mesh recon-
structed from the image data. However, the size alone is not reli-
able enough for evaluating rupture risk and treatment options. In
current medical research, the influence of other morphological de-
scriptors, such as the height and width, on the aneurysm state is an-
alyzed. Unfortunately, the manual extraction of these descriptors is
an error-prone and time-consuming process [MGW™18]. Accurate
measurements are necessary to identify meaningful risk factors.

We present a novel system that assists physicians in the detec-
tion and risk assessment of aneurysms. The system can be used
to detect and segment aneurysms in blood vessels, extract the os-
tium curves separating the aneurysms from the healthy vessel, and
estimate the relevant morphological parameters. Finally, it gener-
ates a report that summarizes the relevant results, including a list
of morphological descriptors, and combines them with renderings
providing visual impressions of aneurysms.

Our approach for detecting and segmenting aneurysms splits into
three stages.

e In the first stage, a global optimization problems is solved to
create list of candidates regions on the input vessel tree.

e In the second stage, the candidates are classified as either
aneurysm or parts of the healthy vessel tree.

e The third stage is optional and allows users to adjust or correct
the results of the previous stages by brushing on the surface.
The strokes are interpreted as additional constraints that are in-
tegrated to the global optimization.

For creating the list of candidate regions in the first stage a com-
binatorial optimization problem is solved. It provides every triangle
of the mesh with a binary label indicating whether or not the trian-
gle could be part of an aneurysm. The objective, we model for this
problem, combines two terms. One term that based on an analysis
on the local geometry associates a costs with two possible labels for
each triangle. The underlying idea is that cylindrical or saddle-like
regions are more likely to be parts of the vessels whereas spherical
regions indicate aneurysms as these bulge out. Since an aneurysm
can not be detected by analyzing at the local geometry only, a sec-
ond term is added to the objective. This term promotes consistent
labeling among nearby triangles by penalizing switching labels be-
tween nearby triangles. This leads to consistently labeled regions
as either aneurysm or vessel and creates short borderlines between
aneurysms and vessels. The resulting optimization problem can be
solved in a fraction of a second using graph cut algorithms. The re-
sult of this stage is a list of segmented regions that are candidates of
aneurysms. After this first stage, we employ a 2nd stage to reduce
the candidate set and thus the number of false positives (FPs) with
an appropriate classifier. For training and validation, we used the
aneurysm database provided by Pozo et al. [PSFC17]. Moreover,
we experimented with artificially created training data.

The resulting method is an efficient approach for the detection
and segmentation of aneurysms. Once aneurysms are detected, os-
tium curves and morphological descriptors are computed. To im-

prove the quality of the generated of ostium curves, we devel-
oped a specific smoothing scheme that produces better aligned and
smoother curves. In summary, the main contributions of this paper
are:

o A fast detection and segmentation algorithm for finding multiple
aneurysms in vessels that combines a combinatorial optimization
problem with a specific classifier.

e A brushing tool that allows users to corrected or adjusted the
results of the optimization problem.

e An approach for smoothing the ostium curve based on a specific
anisotropic diffusion of an indicator function.

e A report generation summarizing all important facts about the
data, where additional renderings of the aneurysms are provided.

2. Related Work

In this section, we first discuss prior work on the (semi-)automatic
extraction of aneurysms and the estimation of their morphological
descriptors. Then, we summarize approaches for the generation of
reports of clinical data, which evaluates the state of a patient.

2.1. Aneurysm Detection

Most algorithms for detecting aneurysms employ the vascular cen-
terline. In a nutshell, these algorithms reconstruct the diameter
of the vessel above the centerline and search along the curve for
areas with enlarged diameter as this indicates the location of an
aneurysm.

Based on clinical image data, Karmonik et al. [KAB*04] pro-
posed a technique to determine points on the centerline in each im-
age slice. After the points are constructed, circles are fitted to the
cross-sections of the parent vessel. An analysis of the variation of
the radii of the circles is used to locate the ostium. The approach
yields erroneous results if the parent vessel deviates strongly from
a tubular shape, which often happens nearby an aneurysm. Lau-
ric et al. [LMFM10] segmented vessel regions in clinical image
data and computed their medial axis. Based on the writhe num-
ber, they distinguished tubular and non-tubular regions to identify
aneurysms. Their approach fails if an aneurysms has a more elon-
gated shape similar to the shape of vessels. Hassan et al. [HHFP11]
suggested an approach that localizes the centerline in clinical im-
age data and fits a quadratic function along the contour of the ves-
sel. If a certain coefficient of the quadratic function exceeds a user-
provided threshold, the corresponding part of the vessel is consid-
ered to be an aneurysm. The algorithm requires that the center-
line runs only along the vessel and does not branch and enter the
aneurysms. Hentschke et al. [HBNT11] developed a method for the
detection of aneurysms based on multimodal angiographic images
using a blob-enhancing filtered image. Another image-based ap-
proach for detecting cerebral aneurysms was introduced by Chan-
dra et al. [CM16]. The core idea of their method is a combina-
tion of automated thresholding for vessel segmentation and mor-
phological filtering for detecting aneurysms in the segmented ves-
sels. In principle, image-based methods are able to detect multiple
aneurysms. However, current methods struggle with missing detec-
tions and false positives. Moreover, the reliable ostium extraction
from 2D image slices is challenging [KAB*04].
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In addition to image-based techniques, 3D surface representa-
tions of the vasculature are used for aneurysm detection. In this
setting, a combination of Voronoi diagrams and distance transfor-
mations was used for the construction of the centerline by Antiga
et al. [APB*08] and the detection of aneurysms by Cérdenes et
al. [CPB*11]. Ford et al. [FHP*09] analyzed the part of the Voronoi
diagram that is inside the vessel for the detection of the aneurysm.
The outgoing vessels are identified as the regions in which the max-
imally inscribed sphere intersect the centerline. The aneurysms are
detected by an analysis of the distance of the vessel wall and the
Voronoi regions. Regions with maximum distance are classified as
aneurysms. Neugebauer et al. [NDSP10] introduced an interactive
tool for the construction of the ostium curve. After a start and end
point on the centerline as well as a point on the aneurysm are spec-
ified, their algorithm generates a candidate ostium curve and pro-
vides the user with four control points that allow for adjusting and
correcting the suggested curve. Mohamed et al. [MSM™*10] deter-
mined all vessel parts that are further away from the centerline than
a given threshold (1 mm). Then, the largest connected component
is used as aneurysm surface. Larrabide et al. [LVUC* 11] employed
the skeleton of the vessel surface to identify potential aneurysm
regions. Parts of the skeleton going from an endpoint to the first
branch point are used as candidates for aneurysms. These parts are
analyzed to identify the aneurysm. A problem of this approach is
that irregularities of an aneurysm, for example additional bulges on
the aneurysm—so-called blebs, can lead to branches of the skele-
ton within the aneurysm. In such a case, the assumption that only
the part between the endpoint and the first branch correspond to the
aneurysm is violated, which results in incomplete or wrong detec-
tion. Moreover, the user needs to specify how many aneurysms are
present in the data. Jerman et al. [JPLS15] proposed a ray-casting
approach to identify aneurysms. From the centerline, rays are emit-
ted towards the vessel wall. The distance from the start point to
the first intersection is used to detect abnormal distances, which
are then used to detect the aneurysm. In this approach, the ostium
curve is constructed by applying Otsu thresholding [Ots79]. Re-
cently, Meuschke et al. [MGW™ 18] present a scheme for the de-
tection of aneurysms that does not require the centerline as input.
Based on the skeleton of the vessel surface, parts with the highest
mean shape index are considered to be an aneurysm. Besides the
mentioned limitations of the individual approaches, the following
two limitations are common to all surface-based approaches. First,
the methods always locates an aneurysm, even in the case that the
input is a completely healthy vessel. Second, they are restricted to
finding one aneurysm in a vessel and would therefore miss further
aneurysms [FHP*09, MSM*10,CPB*11,JPLS15, MGW*18].

2.2. Report Generation

In clinical routine, reports give a detailed insight into the patient’s
state, diagnostic findings, and recommendations for treatment. In
addition, they serve as a basis for discussions of the involved physi-
cians, e.g., in a stroke unit or tumor board. Often, automatically-
generated documentations are text-based descriptions that lack
a clear structure, which hampers the readability and interpreta-
tion of the reports. Much effort is dedicated to improving clini-
cal reports by developing systems that support the generation of
structured reports. The approach taken is to provide predefined
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data entries, which are then filled with information. For exam-
ple, Karim et al. [KFB*13] developed a web-based application
that produces a structured report in the field of abdominal aortic
aneurysms. For this purpose, different graphical widgets, such as
drop-down menus, diagrams and predefined images are used. Wib-
mer et al. [WVS*14] presented a standardized diagnostic certainty
lexicon for reporting the likelihood of prostate cancer. With this
the number of expressions used by radiologists to indicate their
levels of diagnostic certainty was reduced, which supports clinical
decision-making.

More advanced methods use visual analytics techniques to sup-
port the collaborative analysis of medical data sets. Pankau et
al. [PWN™*15] developed a 3D documentation system that allows
standardized reporting for head and neck cancer including aspects
like tumor staging. The benefits of visual elements in a report, such
as standardized and individualized screenshots, were emphasized
by the physicians. Ai-Awami et al. [AABH*16] presented Neu-
roBlocks, a multi-user web-based visualization system for manag-
ing and performing very large volumetric segmentations in neuro-
science. Users groups having different access rights for editing and
verifying results can be defined. Bannach et al. [BBJ*17] devel-
oped a system that combines medical image analysis with visual
analytic techniques to build, analyze, and evaluate patient cohorts.
They used radiomics that are quantitative image features to enrich
the patient’s diagnosis with further information. These are comple-
mented with additional meta data like the patient’s age and gender.
Filter masks are provided to define cohorts that should be statisti-
cally analyzed.

While existing systems concentrate on the analysis and struc-
tured communication of clinical image data, for the investigation
of cerebral aneurysms other data such as morphological descriptors
based on geometrical information need to be included. Our method
provides a consistent report structure that augments estimated val-
ues of morphological descriptors with additional depictions. This
provides the physician with a rich and easily accessible source of
information and is intended to support the analysis and treatment
planning.

3. Requirement Analysis

The basis of our approach is a careful analysis of the requirements
our method needs to satisfy to be effective in practice. We defined
the requirements in close cooperation with one medical expert,
who has 16 years of work experiences. He regularly treats cerebral
aneurysms and is involved in the diagnosis and treatment planning.
To define requirements, we discussed the workflow in clinical rou-
tine. For every patient, different types of data are acquired includ-
ing clinical image data as well as patient-specific meta information,
such as gender and age. These data are analyzed collaboratively by
different domain experts. While currently no standardized report is
used for their communication, they see it as something they could
potentially benefit from. Physicians search manually for aneurysms
in the acquired image data. Morphological descriptors of the de-
tected aneurysms, in particular their widths and diameters, are esti-
mated and form the basis for decisions on whether or not to treat an
aneurysm. For treatment planning, additional morphological prop-
erties, such as the width of the ostium, are considered. The morpho-
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Figure 2: Illustration of our pipeline. First, an input mesh is loaded, a data structure storing the mesh’s dual edges is constructed, and the
shape indices of all triangles are computed. Then, an optimization problem is solved to generate a list of candidate patches on the surface.

Finally, a classifier identifies the aneurysms in the candidate list.

logical descriptors are manually estimated using either clinical soft-
ware that operates on 2D-image slices or the open-source program
ParaView that operates on 3D-surface meshes. In both cases, the
estimation of the descriptors is a time-consuming and error-prone
process. For example, it is difficult to find the maximum extension
manually. For the construction of the ostium curve, which is done
manually, Paraview is used. Again, this is a time-consuming task, in
which 2D-planes need to be specified to cut the surface mesh along
the ostium. Based on these discussions, we defined the following
requirements for our method:

Req. 1. An approach for detecting and segmenting aneurysms in
vessels that avoids users having to specify values for parameters for
which they have no intuition.

Req. 2. To adapt to the anatomical diversity, the approach must
allow manual correction of the results of the detection and segmen-
tation scheme.

Req. 3. For the detected aneurysms, morphological descriptors
should be automatically estimated.

Req. 4. A report that lists the values of morphological descriptors
and augments this information with renderings of the aneurysms
should be generated.

4. Methods

In this section, we describe how we combine the shape index, which
characterizes the local surface geometry, a global combinatorial op-
timization problem, a k-means classifier, a brushing interface for
user interaction and a smoothing scheme for the ostium curve to
form an effective system for detecting and segmenting aneurysms
in vessels. Furthermore, we discuss the generation of a report,
which summarizes and illustrates the results including the mor-
phologic properties of the aneurysms. While we address the whole
pipeline from 3D-image data to the generation of the final report
summarizing the results, our focus in this section is on aneurysm
detection and segmentation in vessels described by triangular sur-
face meshes and the report generation. The conversion of 3D-image
data to a surface mesh representation is discussed in Section 7.5.

4.1. Preliminaries

We start the technical description of our method by introducing
some notation. The triangular surface mesh representing the surface
of the vessel is denoted with M. The mesh is a simplicial complex

consisting of vertices V ={1,2,...,n},edges E = {(i, ) |i,j €V},
and triangular faces F = {(i, j,k) | (i, j), (j, k), (k,i) € E}. To de-
scribe the first stage of our algorithm, we will use dual edges
E*={(i,))|i,j € F}. Apair (i, j) is a dual edge if triangles i and j
are neighbors, i.e., if the triangles share a common edge. For every
vertex i € V, we denote with p; € IR® the vector encoding the posi-
tion of the vertex in IR and with n; € IR? and n/ € IR? the unit sur-
face normal vectors at vertex i and triangle j. Using double indices,
we refer to the differences, e.g., p;j = p; —p; and n;; = n; —n;.

Our algorithm for detecting aneurysms makes use of the curva-
tures of the surface of the vessel. Various schemes for the approx-
imation of the curvatures of a surfaces from an approximating tri-
angle mesh have been proposed [CSMO03, Rus04, PWY*07, HP11].
For a recent quantitative evaluation curvature estimation scheme,
we refer to [VVP*16]. For our experiments, we use the technique
by Rusinkiewicz [Rus04], which yields an approximation of the
two principal curvatures, K, K, at every triangle of a mesh. Instead
using the principal curvatures directly, we use them to compute the
shape index S, which is defined as

S:l—%atan(m). (1)

2 K| —Kp

The shape index of a point, in our case of a triangle, is a number
from the unit interval that describes the local shape of the surface. It
depends only on the principal curvatures, and, therefore, is invariant
to rigid motion. Moreover, the shape index is invariant to scaling of
the shape as it is a quotient of the curvatures. For example, spheres
of different radius have the same shape index. A shape index of 1
corresponds to a convex spherical region, in which both principal
curvatures take the same positive value, and, a shape index of 0.5
corresponds to saddle-like shape, in which both principal curva-
tures have the same magnitude but opposite signs. A shape index
of 0 corresponds to a concave spherical region where both principal
curvatures have the same negative value. To provide some intuition
on the shape index, Fig. 3 shows some example surfaces with vary-
ing shape index. For more background on the shape index, we refer
to [KvD92].

4.2. Candidate Aneurysms

The first stage of our algorithm detects and segments regions in the
vessels that serve as candidate aneurysms. In this stage, every trian-
gle is assigned a binary label indicating whether or not the triangle
is part of a candidate aneurysm. The values of the labels are deter-
mined by solving a combinatorial optimization problem. Our mod-
eling of this optimization problem is based on two heuristics. The
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Figure 3: Different shape index values for the depicted surface.

first is that we think of a vessel as a curved tube. Therefore, its local
geometry is rather that of a cylinder or a saddle than that of a sphere.
On the other hand, the aneurysms are areas that bulge out and bal-
loon, which means that their local geometry is rather spherical than
cylindrical. The second heuristic is that at the border between an
aneurysm and the vessel the local geometry is rather saddle-like.
This is also a consequence of the ballooning of the aneurysm.

The optimization problem assigns a binary label /; to every tri-
angle of the mesh. If /; = 1, then triangle i is labeled as part of an
aneurysm, and, if /; = 0, it is considered part of the vessel. The
binary vector / € Z ¥l
E()=Y Dil)+y Y, Vijlli,1j), )

ieF (i.J)CE*

stacks all labels /;. The objective

to be minimized consists of a data term, which is a sum of the unary
terms D;, a regularization term, which is a sum of the binary terms
Vi j» and a smoothing parameter Y.

The data term reflects our two heuristics. We use the shape index
as a rigid motion- and scale-invariant measure of the deviation of a
local geometry from being spherical, which indicates an aneurysm,
as well as from being saddle-like or cylindrical, which corresponds
to a vessel. The data term is univariate, thus providing a cost for the
label given to a triangle. If the triangle i is labeled aneurysm, the
cost depends on the difference of the shape index S; and 1, which is
the shape index of a sphere. If the triangle is labeled vessel, the cost
depends on the difference of S; and 0.5, the shape index of a saddle.
The penalty function grows exponentially, meaning that labeling a
saddle-shaped region as aneurysm or labeling a spherical region as
vessel yields a high penalty. Explicitly the data term is defined as:

—log(+2—-2-S;) ifl;i=1
YOS ) 3)
—log(—l +2-Si) if ; =0.

The regularization term is a binary term that specifies a cost for
the labeling of pairs of triangles. In our case, only neighboring tri-
angles with different labels produce a cost. Explicitly the regular-
ization term is

0 ifl;=1;

(L] =

el {logus,»j) ifl; #1;.

The term §;; is the difference of the shape indices of the two tri-
angles. To explain our modeling of the binary term, we want to
mention that —log(|S;;|) = —log(1/2) —log(|2S;;|). This means
that the penalty for switching labels consists of two terms. The first
is the constant term —log(1/2). This term discourages switching
labels, and, thereby, helps to create consistent aneurysm structures.
For example, though aneurysms tend to have spherical local geom-
etry, due to irregularities there can be small areas in the aneurysm

“
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which are cylindrically shaped. Though the data term would re-
sult in a lower cost for labeling the area as vessel, the regular-
ization term encourages to still label the areas as aneurysm be-
cause switching the label produces additional costs. Moreover, the
penalty for switching labels encourages creating short borderlines
between aneurysms and healthy vessels regions.

The second term, —log(|2S;;|), depends on the difference of the
shape indices of the triangles. A large difference in shape index
results in low cost and vice versa. The reason for this choice re-
lates to our second heuristic, which states that the border region be-
tween aneurysm and vessel is rather saddle-like shaped. Since the
aneurysm is spherical, there is strong variation of the shape index
across the border and only little variation of the shape index along
the borderline. This means that associating little cost to pairs of tri-
angles with large difference of shape index encourages the scheme
to actually place the borderline, as desired, orthogonal to the direc-
tion of variation of the shape index. The factor of 2 in the second
term appears since the value of S;; is between 0 and 0.5 and the
argument for the —log function should be in the range [0, 1]. The
smoothing parameter Y was assigned the same value for all reported
results. The value was determined experimentally and set to 4.1.

The resulting optimization problem can be efficiently solved us-
ing graph cut algorithms. We refer to [BVZ01, YBVRZ01, BK04]
for some background on this type of optimization problem. The fi-
nal step of the first stage of the algorithm, is a connected component
analysis of all triangles that have the label aneurysm. The result af-
ter this step is a list of regions on the surface that are candidates of
aneurysms. In our experiments, the optimization was able to iden-
tify all aneurysms on the vessels we tested with, which includes the
The problem, however, is that also parts of vessels were labeled as
aneurysms (false positives). Therefore, we added a second stage to
the algorithms that separates the false from the true positives.

4.3. Classification

The goal of the second stage of our algorithm is to remove the
false positives from the list of candidate aneurysms that was con-
structed in the first stage. This is achieved by a binary classification,
aneurysm or part of the healthy vessel, of all candidates. In contrast
to the first stage of the algorithm, in which the individual triangles
received labels, in this stage entire regions, which result from the
connected component analysis step of the first stage, receive a la-
bel. For the classification, we use four carefully chosen features.
By a feature, we mean a statistical value for the whole candidate
region. To select the features, we tested different possible features
for statistical significance.

The first feature, denoted by f], is the mean shape index of the
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Figure 4: Left the input mesh is shown. After the graph cut algorithm was applied the aneurysm was detected, but the ostium needs to be
corrected. Thus, the user brushes aneurysm and vessel parts in light red and blue, respectively. The result is shown right.

region. Since we expect the aneurysms to be rather spherical and
the vessels to be rather cylindrical or saddle-like, the mean shape
index of an aneurysm will tend to be larger than that of the false
positive. The second feature relates to the shape of the region. We
use the vertices of the region as a point sample, construct the covari-
ance matrix of the point sample, and compute the singular values
A1 > Ao > A3 of the covariance matrix. The feature is

M
- AM+A+As]

which is one of Westin’s measures [WEMM™02]. Our interpreta-
tion of why this feature is useful is that the aneurysms tend to
be rather roundish whereas the parts of vessels tend to stretch out
along the vessel. As aresult, f> tends to be larger for the aneurysms
than for the false positives.

f2 &)

The third and fourth features relate to the shape of the boundary
of the region. We use the vertices of the boundary as a point sample
and compute the singular values of the corresponding covariance
matrix. The two features are the two Westin’s measures

7\.2-7&3 }\41 _7\'2

g MM __Moh 6
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Our explanation for why these features help to detect the false pos-
itives is that the boundary of the aneurysms tends to be circular.
This means that the differ-
ence of the first two singular
values is rather small and the
third singular value is small
compared to the other two.
In contrast, the false posi-
tives do not have this struc-
ture. They rather stretch
in one direction. Therefore,
aneurysms tend to have a
larger value of f3 and a
smaller value of f; than the
false positives, see Fig. 6 for
examples of the f values on
case 43.

f

1 =0.76
fa=0.12
f3 = 0.02
fa=0.95

Figure 6: Two candidate re-
gions on a vessel identified by
the first stage of our algorithm
and the values of the four fea-
tures used for classification are
shown.

To train and evaluate
the classifier, we used the
aneurysm database provided

by Pozo et al. [PSFC17]. To reduce computation time, we reduce
every surface to 20,000 triangles using the mesh coarsening
algorithm of Garland and Heckbert [GH97]. Afterwards, we ran
the first stage of our algorithm on all vessels in the data set to create
a list of candidate regions. We computed all four features for every
candidate and manually classified them. The resulting data consists
of 105 candidate regions, 62 aneurysms and 43 vessel patches. We
experimented with different classification techniques, including
decision trees, discriminant analysis, logistic regression, variants
of support vector machines, and nearest neighbor classifiers,
and found the weighted k-nearest-neighbor technique [HS04] to
perform well for our problem. We used a 5-cross validation to
evaluate the classifier and achieved an accuracy of 99%.

Since our data set is quite small and we have an expectation
of what values the four features will take for aneurysms and for
vessel regions, we decided to also experiment with a classifier
trained on purely artificial data. We generated an artificial list of
10,000 4-tuples of feature values each equipped with a label, either
aneurysm or vessel. The 4-tuples are generated by drawing four
values from certain random distributions. A tuple that receives the
label aneurysm is drawn from a Gaussian distributions with mean
values uy, = 0.85, uy, =2/3, ur, =2/3, and uy, = 1/3, and, for a
tuple with label vessel, the mean values are uy, = 0.75, up, =1 /3,
up, = 1/3, and up, =2/3. We set the standard deviation G of the
Gaussian distributions to be 1/20 for the first feature and 1/6 for
the other three features. The mean values represent our expectation
of the feature values for the two classes. After training on the artifi-
cial data set, the classifier was evaluated on our data set comprising
105 candidates. Interestingly, the resulting performance was also
99%, hence matched the performance of the classifier trained on
real data. This indicates that the four features are well chosen and
the resulting classification problem is not difficult.

4.4. Manual Correction

Since the aneurysm detection is fast, a user can interact with the
method to modify or correct results. We developed a brushing in-
terface that can be used to adjust or correct the segmentation of
the aneurysms. Additionally, it can be applied to added missing
aneurysms to the results or remove misclassified regions. The user
can brush on the surface of the vessel in two colors, magenta to in-
dicate that a region should receive the label aneurysm and blue to
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Figure 5: Left the input mesh is shown. Based on the ostium surface, different morphological descriptors are calculated and rendered within
the semi-transparent aneurysm surface. The start and endpoints of each descriptor are depicted as spheres and the connecting lines are
visualized as tube. From left to right the aneurysm’s height, its width, and the width of the ostium curve are shown.

define healthy vessel regions. The user input provides constraints to
the optimization. Depending on the color used, the brushed trian-
gles are constrained to be aneurysms or parts of the healthy vessel,
respectively. The constraints are implemented by setting the shape
index of the corresponding triangles to 1 for magenta strokes and
0.5 for blue strokes. We want to emphasize that the user only needs
to indicate the desired changes by some strokes. During the opti-
mization the labels of the strokes will be propagated to the neigh-
boring regions. The process is illustrated in Figure 4 on the vessel
case 21 from the data set [PSFC17].

4.5. Smoothing Scheme

In addition to the optional correction of the labeling, we devel-
oped a post processing step for improving the segmentation. Since
the optimization problem results in binary labeling of the triangle,
the borderline between aneurysms and healthy vessel, the ostium
curve, is restricted to run along edges of the mesh, which results in
jagged borderlines. A second issue that we observed is that the opti-
mization sometimes constructs aneurysms that are concave regions
in the vessel. Figures 7 and 8 show two examples of segmentation
where regions classified as vessels protrude into the aneurysms. We
developed a smoothing scheme that counteracts both effects. The
first step is to convert the label of the triangles into a continuous
function that is a linear polynomial on every triangle. Then we use

Figure 7: A result of the smoothing process: On the left the
segmented aneurysm before and on the right after smoothing are
shown.
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a threshold, which we set to 0.95, to separate the aneurysm from
the vessel. The resulting ostium curve is no longer constraint to
run along the edges. The idea is to smooth the continuous function
in a specific way to obtain smoother regions and ostium curves.
Functions on the mesh that are continuous and linear polynomials
over the triangles can be described by listing function values at the
vertices. To convert the labels at triangles to such a function, we
simple the set values at the vertices to 1 if they are adjacent to a
triangle with label eneurysm and 0 otherwise. For smoothing of the
resulting function, which we denote by u, we use an anisotropic
diffusion scheme. The anisotropy depends on the norm of the gra-
dient of u. We compute the gradient of u in every triangle and set
the weight w; at a vertex to be the maximum of the norms of the
gradients in all adjacent triangles. The effect our choice of weights
is that the smoothing process is concentrated to the border region
between aneurysm and vessel. We use an implicit integration of the
anisotropic diffusion process, which requires solving the following
sparse linear system in every iteration

(I —tWro)uh ! = ot @)

Here u® and u**! list the function values at the k" and (k 4 1)*
iteration, / is the identity matrix, £ is the cotan Laplace ma-
trix [BKP*10], WK is a diagonal matrix that lists the weights w;,
and 7 is the step size. The scheme is initialized with u’ =u and
the weights w; are updated after each iteration. Before starting the
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Figure 8: Illustration of the evolution of the ostium curve during
the smoothing process. The plot on the right shows the decrease of
length of the ostium curve during smoothing.



Lawonn et al. / A Geometric Optimization Approach for the Detection and Segmentation of Multiple Aneurysms

Table 1: Summary of the performance test with the number of triangles, the number of vertices, the calculation of the shape index, the
computation of the dual mesh, the graph cut, the connected component analysis (CCA), the smoothing scheme with 20 steps of iterations,
and the extraction of morphological parameters in seconds depending on the number of triangles of the aneurysm.

Name |F| V| || Shapeins Dualins | Graphcutins CCAins | Smoothingins | Morph. in s (# tri)

Casel 281.932  141.130 12.5 3.1 1.19 2.27 51.5 12.7 (44.479)
140.965  70.602 6.3 1.4 0.5 1.24 10.6 5.3 (22.225)
70.482 35.341 3.1 0.7 0.24 0.64 15.1 2.5 (11.120)
35.241 17.702 1.6 0.3 0.12 0.31 5.9 1.1 (5.535)

Case40  75.434 37.861 32 0.8 0.26 0.66 1.6 2.8 (2.801)
37.716 18.982 1.6 0.3 0.13 0.33 0.5 1.1 (1.206)

smoothing process, we mark all vertices that are adjacent to a trian-
gle with the label aneurysm. The function values of these vertices
are excluded from the smoothing process by constraining the func-
tion values to be 1. This ensures that the aneurysm does not shrink.
Instead the aneurysm grows in particular in the concave regions,
which addresses the second issue discussed above. The smoothing
process can be started and stopped by a user, or, when used as an
automatic post process, we found 20 iteration and a step size of
T = 1 to deliver convincing results in our experiments. The supple-
mentary material show some experiments with different values for
the steps size and indicates that by setting T = 5 and the iterations
to 4, the smoothing process can be accelerated without degrading
quality. Figures 7 and 8 show results of the smoothing process for
case 2 and case 19 from [PSFC17]. Fig. 8 illustrates the evolution
of the ostium curve with the iterations of the smoothing process.

4.6. Report Generation

After we identified the aneurysms and smoothed the ostium, we can
generate the report that includes the relevant information about the
data set. Since the aneurysms are segmented from the vessel, the
morphological properties can be estimated directly from the mesh.
We refer to Meuschke et al. [MGW* 18] for an overview of impor-
tant properties and how they can be estimated. In addition to the
estimated values, renderings of the aneurysms that include illus-
trations of the morphological descriptors are added to the report.
Example images are shown in Fig. 5. For every aneurysm, the re-
port includes four renderings, which provides the physicians with
depictions from different anatomical perspectives and is intended to
help them in assessing the anatomical conditions. To generate the
renderings, we define four camera settings c; to c4, each compris-
ing a viewpoint, a position and an up vector of the virtual camera.
The view direction of the camera can be calculated from the view-
point and the position of the camera. The first two settings ¢; and
¢y show the aneurysm from the front and back sides and c¢3 and
¢4 show the aneurysm from the left and right. The same viewpoint
pv, which is a point in the center of the aneurysm, is used for all
camera settings. Explicitly, the viewpoint is the intersection point
of the aneurysm’s height vector v, which is the vector between
the center of the ostium and the aneurysm’s dome position, and
the aneurysm’s width vector v,,, which is the vector defining the
maximal aneurysm extent orthogonal to the height vector. As up
vector for all camera settings, we use the aneurysm’s height vector
vy,. The position of the camera varies for the four camera settings.
For ¢; and c,, we define a direction vector v, orthogonal to the

aneurysm height and width v; = v;, X vy,. Then, the camera posi-
tion p.j of ¢1 is pe1 = pv + (diameter - v;) and the camera position
of ¢p 18 pey = pv — (diameter-v,;), where diameter is the maximum
extent of the aneurysm. For the remaining two camera settings, we
use the width vector v, which the difference vector of the two
points pws and pywe of the aneurysm. The camera position p.3 of
¢3 1S Pe3 = Pwe + (diameter - vy,), and the camera position of ¢4 is
Pc4 = Pws — (diameter - v,,). To avoid occlusions of the aneurysm
by the parent vessel geometry, we depict the surface mesh semi-
transparently. Moreover, we depict the morphological descriptors
within the aneurysm, where we restrict the rendering to the height
and width descriptor, the two most important aspects to avoid visual
clutter. To obtain an overview screenshot of the whole surface, we
apply the technique for the automatic viewpoint selection proposed
by Neugebauer et al. [NLBP13]. Finally, LaTex code is generated
and used to produce a PDF that contains an overview image, the
four screenshots of every aneurysm, and a table listing the morpho-
logical descriptors.

5. Performance

The performance was tested on a Microsoft Surface Book 2 with
16 GB RAM, Intel Core i7-8650U Quad-Core 4,2 GHz, NVIDIA
GeForce GTX 1050 with 2 GB GDDRS. Our algorithm comprises
the steps listed in Sec. 4. We used surface meshes with different
resolutions and timed every step 10 times. The timings were then
averaged. A list of timings can be found in Tab. 1. For this, again
we used the data provided by Pozo et al. [PSFC17] and reduced
to different resolutions. Especially for the shape index a paralleliz-
able version of the curvature estimation could be used to improve
the result. However, we only determined the values once and saved
them. Moreover, the values for other surface scale according to the
other values, thus, we decided to list only a few values in the table.

6. Evaluation of Requirements

We evaluated our program with a neuroradiologist, who has
16 years of work experience and who regularly treats cerebral
aneurysms. This evaluation should assess whether we fulfilled the
requirements (recall Sec. 3) and provide advice on how our pro-
gram could be improved. In the first phase of this evaluation, we
introduce our framework and acquaint the physician with all im-
portant features. Then, we gave him the opportunity to load data
himself and explore them. For every requirement, we asked him to
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Figure 9: Left the result by Meuschke et al. [MGW ™ 18] is shown. The ostium curve should follow the dashed line as shown by our approach.

Additionally, with our method the smaller aneurysm is detected.

test it on a few data sets and to give us his opinion. During the eval-
uation, we asked the participant to think-aloud such that we could
take notes.

6.1. Evaluation of Req. 1

In order to test for requirement Req. 1, our domain expert loaded
every data set from the aneurysm database provided by Pozo et
al. [PSFC17] and checked whether our algorithm correctly detects
and segments the aneurysm. During the session, the smoothing pa-
rameter y was set to the default value stated in 4.2. In addition to
the segmented aneurysms, the expert also inspected the candidate
list constructed in the first stage of our algorithm. The expert found
our algorithm to detect and segment the aneurysms correctly and
confirmed that our classification of the candidates has high accu-
racy, as reported in Sec. 4.3. The expert suggest that the program
should make the candidate list available to the user on request as in
case the algorithm misclassified a candidate, the user could easily
correct the result. We incorporated this feature request to our pro-
gram. We met again with the neuroradiologist and he was satisfied
with the revised program.

6.2. Evaluation of Req. 2

The typical workflow, as observed during the evaluation, was that
the domain expert first visually inspected the surface mesh to iden-
tify the aneurysm himself and then checked the results of our algo-
rithm. As first feedback the results after the classification stage are
shown to the user. If multiple aneurysms are detected each receives
a different color. As can be seen from the timings list in Tab. 1, this
process requires only few seconds. The expert used the brushing
tool to modify and adjust the results. Since the optimization and
classification stages are fast, the algorithm incorporates the user’s
strokes in less than a second. Once he was satisfied with the result,
he pressed the button to determine the ostium curve, which trig-
gers smoothing process. The expert was surprised that the smooth-
ing process took longer than the other stages of the algorithm. For
many examples, he reduced the number of smoothing iteration to
ten to shorten the execution time. In summary, he was positively
surprised with the performance.

6.3. Evaluation of Req. 3

After the aneurysm identification and the smoothing process, the
ostium curve is extracted, which is needed for the estimation of
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the morphological parameters. The expert mentioned that the au-
tomatic estimation saves much time as he has to do this manually
during the clinical workflow. Moreover, he emphasized the value
of the automatic computation as the manual computation is error-
prone since it is difficult to estimate a line from the height vector,
which is perpendicular. He positive mentioned the visualizations
of the morphological parameters, see Fig. 5 for an example. He
found these to be very helpful to acquaint himself with the data.
Altogether, he rated the automatic estimation of the morphological
descriptors as very helpful and intuitive. In addition, he made one
suggestion, which we consider as future work. He was curious to
know how the morphological parameters change when the ostium
curve slightly varies. We agree that it would be interesting to ex-
perimentally explore the stability of the morphological parameters
with respect to variations of the ostium curve and to extend our
program to support such exploration.

6.4. Evaluation of Req. 4

The domain expert also looked at the automatically generated re-
ports for all inspected data sets. He wanted to check whether the
important information was provided by the reports. He was very
happy with the reports and stated that he considers this very help-
ful support for board meetings in which cases are discussed. As a
feature request, he asked to allow users to add additional screen-
shots and annotate them. The resulting illustrations should be inte-
grated to the report. Furthermore, he pointed out that he would like
to be able to add notes to the report, e.g., concerning comorbidity.
In summary, he was satisfied with the report.

6.5. Comparison with State of the Art

In addition to the evaluation with a domain expert, we compared
our approach with the recent technique proposed by Meuschke et
al. [MGW™18]. Their technique is based on a thinning method.
First, they thin the mesh and extract the mesh skeleton. From every
skeleton end node a path to the closest junction node is determined.
For every path, the corresponding vertices on the surface mesh can
be obtained. Afterwards, the region with the highest mean shape
index is a designated aneurysm region. This gives the aneurysm re-
gion but only if an aneurysm occurs in the mesh. Afterwards, four
characteristic points on the ostium are determined and connected
using the the shortest edge path on the mesh, which is computed
with Dijkstra’s algorithm. Fig. 9 (left), shows the result of the ap-
proach on case I from [PSFC17]. The ostium curve is wrongly



Lawonn et al. / A Geometric Optimization Approach for the Detection and Segmentation of Multiple Aneurysms

Figure 10: The results of our algorithm tested with different level of noise. The first row shows case 31 with an average edge length of
0.3713 and the second row shows case 37 with an average edge length of 0.3620. We randomly shifted the vertex positions along normal
direction with a random value of [0,1/2],]0,1/3],[0,1/4],]0,1/5] for the column from left to right.

constructed, as it is below and not above the outgoing vessel. One
would expect to have a curve similar to the one indicated by the
dashed lines. Our approach constructs the ostium curve correctly.
Moreover, our approach additionally detects the smaller aneurysm
on the same vessel.

7. Discussion and Further Evaluation

In this section, we provide further evaluation and discussion of our
method. We discuss the effect of variation of the smoothing pa-
rameter Y on the results, evaluate the classifier, and test our method
on input meshes with different mesh resolutions, geometric noise
in the vertex positions and on meshes directly extracted from 3D-
image data with standard software tools.

7.1. The Smoothing Parameter y

To increase usability of our method, we specified a default value
for the method’s main parameter, the smoothing parameter v, see
Section 4.2. We experimentally found a standard setting for this pa-
rameter, Y = 4.1, that was used for all examples shown in the paper

Figure 11: The influence of the parameter 'y on the results is illus-
trated. The values of y from left to right are 1,3,4.

and the supplementary material. Still, we want to discuss the effect
of this parameter on the results. The lower v, the stronger the influ-
ence of the data term D;(/;). For example, for y = 0, the data term
dominants. Since it is a unary term, the label of a triangle depends
only its shape index. It is set to aneurysm if the shape index is larger
than 0.75 or to vessel if the shape index is less than 0.75. Increas-
ing vy increases the influence of the regularization term. Then, the
decision for every label depends on the global context. For exam-
ple a set of triangles whose shape index indicates an aneurysm may
be assigned the label vessel if they are surrounded by triangles with
label vessel. The other way around, a connected set of triangles that
have the label aneurysms may grow in order to reduce the length of
the boundary curve, which is penalized by the binary term. Results
obtained with different y values on case 48 are shown in Fig. 11.
When the value of 7y is decreased to 3 and 1, the aneurysm is still
detected but only a part of the aneurysm is segmented.

7.2. The Classifier

Our main source of data is the collection of aneurysms provided
by Pozo et al. [PSFC17]. The results for all data sets of the collec-
tion are shown in the supplementary material. These results were
all generated without user interaction and the same default value
for the smoothing parameter in the optimization and 20 iterations
for the smoothing process. Moreover, we used the classifier that
was trained on artificial data for the shown results, hence, no data
from the collection [PSFC17] was used for training. The results
was evaluated by a domain expert as discussed in the previous sec-
tion. Our classification achieved an accuracy 99%, which we want
to discuss. There was one wrongly classified patch, which is was
a false positive, i.e., we had a vessel patch as ground truth, which
was predicted as an aneurysm patch. The wrong classified data is
case 33. The problem can be solved by setting 7y to 4.625. A sec-
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ond issue was that in case 17, the optimization missed to identify
an aneurysm. By setting ¥ to 1, the aneurysm can be found iden-
tified. However, it is connected to large parts of the outgoing ves-
sel. For this case, additional user input is necessary to segment the
aneurysm only.

7.3. Mesh Resolution

For the results on 50 test cases shown in the supplementary mate-
rial, we decreased the number of triangles to 20,000 to reduce the
computation time. To justify this step, we conducted experiments to
evaluate the effect of mesh coarsening on the results. We compared
results of our method on meshes approximating the same vessel
surfaces with different mesh resolutions. Results for case 12 are
shown in Fig. 13. In our experiments, variations of more than an
order of magnitude in the number of triangles resulted in visibly
similar results and negligible differences in the estimated morpho-
logical parameters.

7.4. Noisy Surfaces Meshes

Another aspect to evaluate is how our method can deal with noise
in the data. When a substantial level of noise is present, we need to
be careful with estimating curvature from the noisy surface. This
is a known problem and a quantitative comparisons of the perfor-
mance of different curvature estimation schemes on noisy data can
be found in [VVP*16]. The comparison indicates that schemes that
estimate the curvature over larger neighborhoods, like [HP11], ex-
hibit best accuracy on noisy data. For our experiments we opt for
an alternative strategy, which is to explicitly smooth the surface
prior to curvature computation. Since the curvature estimation is
the only step that suffers from the geometric noise on the surface,
we use the smoothed mesh only for the curvature computation and
discard it after the computation. Only the estimated shape indices
at the triangles are kept and used for next step of our algorithm.
To keep our approach simple, we evaluate our method with a sim-
ple Laplace smoothing process and the same curvature estimation
scheme as used for all other experiments. Laplace smoothing is an
iterative procedure and requires users to stop the smoothing pro-
cess when the desired level of smoothness is achieved. Since we
try not to hand such tasks to the users, we used a heuristic stop-
ping criterion for the smoothing process in our experiments. The
stopping criterion computes the local deviation of the vertex nor-
mals to assess the level of smoothness of the surface. Before the
first and after every iteration of Laplace smoothing, we compute
the mean of the dot products of the vertex normals of all pairs
of vertices that are connected by an edge. The smoothing process
is terminated if either the mean dot product exceed 0.98 or the
mean value decreases compared to the mean value computed in
the previous iteration. We want to mention that an alternative to the
discussed simple heuristic stopping criterion would be to use an
optimization-based smoothing scheme, like [HPO7]. This scheme
minimizes a fairness energy subject to spatial constraints that are
derived from accuracy margins of the data which often can be es-
timated, e.g., they are provided by the manufacturer of a measur-
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ing device or relate to the spatial resolution used for 3D-imaging.
Fig. 10 shows results of an experiment, in which normal noise was
added to the surfaces of the vessels (case 31, 37) used as input to
our method. For both vessel surfaces, we added random noise with
four different levels of strength (random numbers drawn from the
intervals [0,1/2],]0,1/3],[0,1/4],]0,1/5]). In case of the strongest
noise level, the smoothing algorithm took less than 2 seconds for
both cases (both with about 10k vertices). As the results demon-
strate, the noise had just little effect on the aneurysm detection and
segmentation.

7.5. 3D-Image Data

So far our evaluation focused on the aneurysm database of Pozo et
al. [PSFC17]. In this paragraph, we extent the evaluation and report
on how our approach can be applied to raw image data, which of-
ten is the starting point in a medical workflow. To convert the raw
image data to a surface mesh, we use the publicly available soft-
ware Slicer (www.slicer.org) [FBKC*12]. Our medical part-
ner provided us with 3D-magnetic resonance angiography time-of-
flight (3D-MRA-TOF) image data. After loading the provided Di-
com data, our first step is to segment the vessels. This procedure
is done automatically with Dicom’s default segmentation module.
Due to the high contrast of the vessels compared to the surround-
ings, the module could perform the segmentation without a need to
change the default parameters. Slicer allows us to convert the re-
sulting segmented vessels to a 3D surface mesh, which is shown in
Fig. 12. The Dicom data set has a resolution of 384 x 224 and con-
sists of 185 images. The 3D-surface mesh produced by Slicer can
directly be used as input for our algorithm. The result of our method
on this data is shown in Fig. 12. Though this is large data set con-
taining many vessels, the aneurysm was correctly detected and seg-
mented. The surface mesh contains 94,249 vertices and 174,264 tri-
angles. The computation time of the segmentation and the surface
extraction in Slicer was less than 1 second. Results for a second
data set are shown in Fig. 14. In this case, the raw data was pro-
duced with digital subtraction angiography. The image data dimen-
sions are 256 x 256 x 222. The extracted surface mesh has 37,296
vertices and 65,112 triangles, extraction again took Slicer about 1
second.

8. Conclusion and Future Work

In this paper, we present a system for detecting and segmenting
multiple aneurysms on vessels. The system combines a local shape
descriptor and a combinatorial optimization problem to generates a
list of candidate aneurysms with a classifier that separates the true
aneurysms from the false positives in the candidate list. The opti-
mization problem is modeled such that it can be efficiently solved
with a graph cut algorithm. The low computation time allows us to
integrate a brushing tool that allows users to adjust and correct re-
sults of the optimization to our system. Furthermore, we developed
a smoothing scheme that allows to improve the segmentation and
results in a smooth ostium curve. Finally, a report, which includes
renderings of the aneurysms from different perspectives and values
as well as illustrations of the morphological descriptors, is auto-
matically generated. The importance and usefulness was shown in
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our evaluation and the supplementary materials shows the results
of our algorithm on the data set provided by Pozo et al. [PSFC17].

For future work, we like to include flow information in the re-
port, since hemodynamic information such as specific flow patterns
also seem to influence the aneurysm rupture risk and treatment suc-
cess [CVS™15]. One possible direction for achieving this would be
to follow the approach of Meuschke et al. [MVPL18, MOJB*18]
to cluster path lines and to classify the resulting blood flow pat-
terns. An arising question is how such additional information, like
the wall shear stress and flow velocities, could be effectively in-
tegrated to the generated report. In the case of multiple detected
aneurysms, we want to further support the decision-making pro-
cess. Several questions arise from a medical point of view. First,
the physician has to decide whether an aneurysm should be treated
and if so, which aneurysm should be treated first. It may happen
that the treatment of one aneurysm affects the flow behavior, lead-
ing to different flow patterns in the other aneurysms. One could try
to visualize the change such that the physician can inspect the dif-
ference and the effects of the treatment. For these questions also

Figure 13: The results of our algorithm tested with different res-
olutions of the vessel surface mesh. From top left to bottom right:
meshes with 10.000, 70.000, 150.000, 200.000 triangles.

Figure 14: Results of our method tested on surface meshes ex-
tracted from digital subtraction angiography image data using
Slicer.

the visualization of different treatment options plays an important
role. For the screenshot generation, we plan to add a more sophisti-
cated approach, that also analyzes the occlusion of outgoing vessel
as well as the visibility of certain quantities [MEB*17]. Moreover,
it would be interesting to explore the detection and segmentation of
fusiform shaped aneurysms in future work.
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