
Computer Graphics II
- Advanced Lighting

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• In the lighting lecture, introduced the Phong lighting model to bring a
basic amount of realism into scenes

• The Phong model looks quite nice, but has a few nuances we will
focus on now

2

Blinn-Phong

• Phong lighting efficient
approximation of lighting

• Specular reflections break down in
certain conditions, when the
shininess property is low resulting
in a large (rough) specular area

• When we use a specular shininess
exponent of 1.0 on a flat textured
plane:

3

Blinn-Phong

• At the edges that the specular area
is immediately cut off

• The reason is that the angle
between the view vector and the
reflection vector is not allowed to
go higher than 90° degrees (if
angle larger, dot product becomes
negative resulting in specular
exponents of 0.0)

• No light with angles higher than
90°?

4

Blinn-Phong

• Only true with the diffuse component (angle higher than 90° between
the normal and light source means light source is below the lighted
surface) → light’s diffuse contribution should equal 0.0

5

Blinn-Phong

• Specular lighting measures between view and reflection direction
vector

6

Blinn-Phong

• 1977 Blinn-Phong shading model was
introduced by James F. Blinn as an
extension to the Phong shading, which
overcomes our problem

• Instead of using a reflection vector, it uses
a halfway vector (unit vector halfway
between the view direction and the light
direction)

7

Blinn-Phong
• When view direction is perfectly aligned with

the (now imaginary) reflection vector →
halfway vector = normal vector

• The closer the viewer looks in the original
reflection direction, the stronger the specular
highlight

• Angle between the halfway vector and
normal never exceeds 90° (unless the light is
far below the surface)

• Produces slightly different results, but mostly
looks slightly more visually plausible,
especially with low specular exponents

8

Blinn-Phong

• Getting the halfway vector is easy, we add the light’s direction vector
and view vector together and normalize the result:

9

Blinn-Phong

• Getting the halfway vector is easy, we add the light’s direction vector
and view vector together and normalize the result:

10

vec3 lightDir = normalize(lightPos - FragPos);
vec3 viewDir = normalize(viewPos - FragPos);
vec3 halfwayDir = normalize(lightDir + viewDir);

Blinn-Phong

• Actual calculation of the specular term becomes a clamped dot
product between the surface normal and the halfway vector to get
the cosine angle between them that we again raise to a specular
shininess exponent:

• And that’s it

11

float spec = pow(max(dot(normal, halfwayDir), 0.0), shininess);
vec3 specular = lightColor * spec;

F5…

12

• … left Phong - 𝑃ℎ𝑜𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 8, right Blinn-Phong - Blinn −
𝑃ℎ𝑜𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 32

Blinn-Phong

• Simple fragment shader that switches between regular Phong
reflections and Blinn-Phong reflections:

13

float spec = 0.0;
if(blinn)

{
vec3 halfwayDir = normalize(lightDir + viewDir);
spec = pow(max(dot(normal, halfwayDir), 0.0), 32.0);

}
else

{
vec3 reflectDir = reflect(-lightDir, normal);
spec = pow(max(dot(viewDir, reflectDir), 0.0), 8.0);

}

Rim Lighting*

14

OpenGL®

SuperBible
Seventh Edition

Introduction

• Rim lighting also known as back-lighting

• Effect that simulates light around an object,
light source placed behind the object

• Produces a bright rim of light around the
contours of the object

• Can simulate effect by determining how close
view direction is at the contour

15

Introduction

• All we need is the view direction and the normal vector of the surface

• If the view direction is perpendicular to the normal, we are close at
the contour, this has the greatest effect (top)

• If view direction and normal vector are almost collinear,
rim lighting is least noticeable (bottom)

16

Rim Lighting

• Calculate this effect with the dot product

• Perpendicular → highest effect

• Collinear → smallest effect

• 𝐶𝑟𝑖𝑚 color of the rim light, e.g., white 1,1,1

• 𝑟 power of the rim lighting

• < 𝑛, 𝑣 > dot product of normal and view vector

17

Rim Lighting

18

• Add function in the fragment shader:

vec3 rimLighting(vec3 normal, vec3 view, vec3 rimColor, float rimPower)
{

float res = 1.0 - dot(normal, view);
// Clamp it to the range 0 to 1
res = clamp(res, 0.0, 1.0);
res = pow(res, rimPower);
return res * rimColor;

}
…
void main()
{
…
FragColor+=vec4(rimLighting(normal, view, vec3(1,0.7,0.7), 2),0);
}

F5…

19

• … rim lighting!

Notes

• Lighting at the contours

• Not realistic as it should only be
placed at the outline

20

Cel/Toon Shading*

21

Introduction

• Cel/toon shading is a non-photorealistic
rendering technique

• Try to appear flat by using less shading

22
https://commons.wikimedia.org/wiki/File:Toon-shader.jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Introduction

• Normal shading is quantized with discrete colors

• Shading in a range is mapped to a constant color

23

Cel/Toon Shading

• Calculate this effect with the ceil function

• Shading is in the range [0,1], ceil finds the nearest (greater) integer

• 𝐶𝑐𝑒𝑙𝑙 color of the cell shading, e.g., white 1,1,1

• 𝑛𝑢𝑚 number of colors used

• < 𝑛, 𝑣 > dot product of normal and view vector

24

Cel/Toon Shading

25

• Add function in the fragment shader:

vec3 celShading(vec3 normal, vec3 view, vec3 cellColor, float numberOfColors)
{

float res = max(dot(normal, view),0.0);
res = ceil(res * numberOfColors) / numberOfColors;
return cellColor*vec3(res);

}

void main()
{

…
FragColor=vec4(celShading(normal,view,vec3(1),3),1);

}

F5…

26

• … cel shading!

Notes

• The higher 𝑛𝑢𝑚 the more shading
(right 20; bottom 5)

27

Gamma Correction

28

Introduction

• Computed final pixel colors have to displayed on a monitor

• In the old days, most monitors were cathode-ray tube (CRT) monitors

• These had the physical property that twice the input voltage did not
result in twice the amount of brightness

• Doubling the input voltage resulted in a brightness equal to a power
relationship of roughly 2.2 also known as the gamma of a monitor

29

Introduction

• This, closely match how human beings measure brightness
(brightness is also displayed with a similar (inverse) power
relationship)

30

Introduction

• Human eyes prefer to see brightness colors according to the top scale

• Monitors (still today) use a power relationship for displaying output
colors so that the original physical brightness colors are mapped to
the non-linear brightness colors in the top scale

31

Introduction

• Non-linear mapping of monitors make the brightness look better, but
there is one issue: color and brightness options are based on what we
perceive from the monitor and thus all the options are actually non-
linear brightness/color options

• Take a look at the graph on the next slide:

32

Introduction
• Dotted line: color/light values in linear space; solid

line: color space that monitors the display
• Double a color in linear space results in a double

value
• E.g., double light’s color vector 𝑙 = (0.5, 0.0, 0.0)

in linear space become (1.0, 0.0, 0.0)
• Colors still have to output to the monitor display,

the original color gets displayed on the monitor as
(0.218, 0.0, 0.0)

• Issue: double the dark-red light in linear space, it
becomes more than 4.5 times as bright on the
monitor!

33

Introduction

34

• Up until now, assumed we were working in linear space

• Working in the color space defined by the monitor’s output color
space → colors and lighting weren’t physically correct

• Thus, we (and artists) generally set lighting values way brighter than
they should be (because monitor darkens them) →makes most
linear-space calculations incorrect

• Note, the monitor graph and the linear graph both start and end up at
the same position; intermediate colors get darkened by the display

Introduction

35

• Colors configured based on the monitor’s display → all intermediate
(lighting) calculations in linear-space are physically incorrect

• Becomes more and more obvious as more advanced lighting
algorithms are used, as you can see in the image below:

Gamma Correction

36

• Idea of gamma correction is to apply the inverse of
the monitor’s gamma to the final output color

• See another dashed line that is the inverse of the
monitor’s gamma curve

• Multiply linear output colors by this inverse gamma
curve (brighter), colors displayed on the monitor,
gamma curve is applied → colors become linear

• Basically we make the intermediate colors brighter
so that as soon as the monitor darkens them, it
balances all out

Gamma Correction

37

• E.g., dark-red color (0.5, 0.0, 0.0), apply the
gamma correction curve to the color value

• Linear colors displayed by a monitor roughly
scaled to a power of 2.2, inverse is a scaling by
a power of 1/2.2

• The gamma-corrected dark-red color thus
becomes (0.5, 0.0, 0.0)1/2.2 ≈ (0.73, 0.0, 0.0)

• Resulting color is displayed on monitor as
0.73, 0.0, 0.0 2.2 = 0.5, 0.0, 0.0

Gamma Correction

2.2 is a default gamma value that roughly estimates the average
gamma of most displays

The color space as a result of this gamma of 2.2 is called the sRGB
color space

Each monitor has their own gamma curves, but a gamma value of 2.2
gives good results on most monitors

For this reason, games often allow players to change the game’s
gamma setting as it varies slightly per monitor

38

Gamma Correction

39

• Two ways to apply gamma correction:
• Using OpenGL’s built-in sRGB framebuffer support
• Doing the gamma correction manually in the fragment shaders

• First option easiest, but less control

• By enabling GL_FRAMEBUFFER_SRGB, subsequent drawing
commands gamma correct colors from the sRGB color space (before
store color buffer)

• sRGB color space roughly corresponds to gamma of 2.2

• After enabling perform gamma correction after each fragment shader
run to all subsequent framebuffers, including the default framebuffer

Gamma Correction

40

• Enabling GL_FRAMEBUFFER_SRGB:

• Rendered images will be gamma corrected
• Note, with these approaches gamma correction (also) transforms the

colors from linear space to non-linear space → important to do gamma
correction at the last and final step

• Gamma-correct colors before the final output → all subsequent operations
on those colors will operate on incorrect values

• E.g., if you use multiple framebuffers you probably want intermediate
results passed in between framebuffers to remain in linear-space and only
have the last framebuffer apply gamma correction before being sent to the
monitor

glEnable(GL_FRAMEBUFFER_SRGB);

Gamma Correction

41

• Second approach more work, but control over the gamma operations

• Apply gamma correction at the end of each relevant fragment shader,
colors gamma corrected before being sent out to the monitor:

void main()
{

…
float gamma = 2.2;
FragColor.rgb = pow(FragColor.rgb, vec3(1.0/gamma));

}

Gamma Correction

42

• Issue: to be consistent have to apply gamma correction to each
relevant fragment shader (a dozen fragment shaders for multiple
objects → add the gamma correction to each of these shaders)

• Easier solution: post-processing stage and apply gamma correction on
the post-processed quad as a final step (do once)

• These one-liners represent the technical implementation of gamma
correction

• Not all too impressive, but there are a few extra things you have to
consider when doing gamma correction

sRGB Textures

43

Introduction

44

• Monitors always display colors with gamma applied in sRGB space,
whenever you draw, edit or paint a picture on your computer you are
picking colors based on what you see on the monitor

• This effectively means all the pictures you create or edit are not in
linear space, but in sRGB space, e.g., doubling a dark-red color on
your screen based on your perceived brightness, does not equal
double the red component

Introduction

45

• As a result, texture artists create textures
in sRGB (if we use those textures in the
rendering, we have to take this into
account)

• Before we applied gamma correction this
was not an issue (textures looked good in
sRGB, without gamma correction, also
worked in sRGB → textures displayed
exactly as they are which was fine)

• Now, displaying everything in linear space
→ texture colors will be off

Gamma correction off

Gamma correction on

sRGB Textures

46

• To fix this, make sure texture artists work in linear space

• Easier to work in sRGB this is probably not the preferred solution

• The other solution: re-correct or transform these sRGB textures back
to linear space:

float gamma = 2.2;
vec3 diffuseColor = pow(texture(diffuse, texCoords).rgb, vec3(gamma));

sRGB Textures

47

• For each texture in sRGB is troublesome

• OpenGL gives us yet another solution to our problems by giving us
the GL_SRGB and GL_SRGB_ALPHA internal texture formats.

sRGB Textures

48

• If creating a texture with any of these two sRGB texture formats, it
will automatically correct the colors to linear-space as soon as we use
them

• We can specify a texture as an sRGB texture as follows:

• To include alpha components specify the texture’s internal format as
GL_SRGB_ALPHA

glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB, width, height, 0, GL_RGB,
GL_UNSIGNED_BYTE, image);

sRGB Textures

49

• Careful when specifying textures in sRGB (not all textures in sRGB)

• Textures for coloring objects (diffuse textures) mostly in sRGB

• Textures for retrieving lighting parameters, e.g., specular and normal
maps mostly in linear space (configure these as sRGB textures →
lighting will break down)

• Diffuse textures specified as sRGB textures get the expected visual
output, but this time everything is gamma corrected only once

Attenuation

50

Attenuation

51

• Lighting attenuates closely inversely proportional to the squared
distance from a light source:

float attenuation = 1.0 / (distance * distance);

Attenuation

52

• This attenuation effect is always way too strong (giving lights a small
radius that didn’t look physically right)

• Thus, other attenuation functions were used (see Lighting lecture):

float attenuation = 1.0 / distance;

F5…

53

• … nice!

Gamma correction off -
Linear

Gamma correction off -
Quadratic

Gamma correction on -
Linear

Gamma correction on -
Quadratic

Attenuation

54

• Cause: light attenuation change brightness, (not visualizing scene in
linear space → chose the attenuation functions that looked best on
our monitor, but weren’t physically correct)

• Squared attenuation function without gamma correction effectively
becomes: (1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2)2.2 (displayed on a monitor)

• Creates larger attenuation effect without gamma correction

• Linear equivalent makes much more sense without gamma correction
becomes: (1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2.2 (physical equivalent a lot more)

Attenuation

The more advanced attenuation function, we discussed in the lighting
lecture is still useful in gamma corrected scenes as it gives much more

control over the exact attenuation (but of course requires different
parameters in a gamma corrected scene).

55

Attenuation

56

• Let’s create the scene where we can change between gamma
correction, and the linear and quadratic function

• Add bools for those (change with key pressed)

bool gammaEnabled = false;
bool quaLin = false;
bool gammaKeyPressed = false;
bool quaLinKeyPressed = false;

Attenuation

57

• We will load one floor texture in sRGB and one in linear space:

// sRGB
glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB, width, height, 0, GL_RGB,
GL_UNSIGNED_BYTE, data);
…
// RGB
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB,
GL_UNSIGNED_BYTE, data);

Attenuation

58

• Check if space or L key was pressed:
void processInput(GLFWwindow *window)
{

…
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS && !gammaKeyPressed)
{

gammaEnabled = !gammaEnabled;
gammaKeyPressed = true;

}
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_RELEASE)
{

gammaKeyPressed = false;
}

if (glfwGetKey(window, GLFW_KEY_L) == GLFW_PRESS && !quaLinKeyPressed)
{

quaLin = !quaLin;
quaLinKeyPressed = true;

}
if (glfwGetKey(window, GLFW_KEY_L) == GLFW_RELEASE)
{

quaLinKeyPressed = false;
}

}

Attenuation

59

• Set options as uniforms to the shader:

shader.setInt("gamma", gammaEnabled);
shader.setInt("quaLin", quaLin);

Attenuation

60

• Change attenuation and gamma option (fragment shader):

…
float attenuation = 1.0/ (quaLin ? distance * distance : distance);
diffuse *= attenuation;
specular *= attenuation;
…
if(gamma)

color = pow(color, vec3(1.0/2.2));
FragColor = vec4(color, 1.0);

Summary

61

• Gamma correction allows to work/visualize renders in linear space

• Linear space makes sense in the physical world, most physical
equations now actually give good results like real light attenuation

• The more advanced lighting becomes, the easier it is to get good
looking (and realistic) results with gamma correction

• That is also why it’s advised to only really tweak your lighting
parameters as soon as you have gamma correction in place

Questions???

62

