
Computer Graphics II
- Anti Aliasing

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• You probably came across some jagged
saw-like patterns along the edges

• Reason is how the rasterizer transforms
the vertex data into fragments

• E.g., drawing a simple cube:

2

Introduction

• Do not want in a final version of an application

• This effect is called aliasing

• There are quite a few techniques out there called anti-aliasing
techniques that fight exactly this aliasing behavior to produce more
smooth edges

3

Introduction

• First technique: super sample anti-aliasing (SSAA) that temporarily; used
higher resolution to render, the visual output is updated in the framebuffer,
the resolution was downsampled back to the normal resolution

• Solution to the aliasing problem, but it came with a major performance
drawback since we had to draw a lot more fragments than usual

• This technique therefore only had a short glory moment

• Then, multisample anti-aliasing or MSAA that borrows from the concepts
behind SSAA while implementing a much more efficient approach

• We will discusse this MSAA technique that is built-in in OpenGL

4

Multisampling
• To understand multisampling, we need to delve a bit further into the inner

workings of OpenGL’s rasterizer

• Rasterizer is the combination of all algorithms and processes that sit
between your final processed vertices and the fragment shader

• It takes all vertices belonging to a single primitive and transforms this to a
set of fragments

• Vertex coordinates can theoretically have any coordinate, but fragments
can’t since they are bound by the resolution of your window

• There will almost never be a one-on-one mapping between vertex
coordinates and fragments, so the rasterizer has to determine in some way
at what fragment/screen-coordinate each specific vertex will end up at

5

Multisampling

• A grid of screen pixels, center contains a sample point
to determine if a pixel is covered by the triangle

• The cyan sample points are covered by the triangle and
a fragment will be generated for that covered pixel

• Some parts of the triangle edges enter screen pixels,
pixel’s sample point is not covered by the triangle, so
this pixel won’t be influenced by any fragment shader

• Origin of aliasing - rendered version of the triangle
would look like this on your screen:

6

Multisampling

• Limited amount of screen pixels, some will be rendered along an edge

• Results in primitives with non-smooth edges

• Multisampling use multiple sample points

7

Multisampling

• Instead of a single sample point, place 4
subsamples

• Size of color buffer increased by the number of
subsamples

• Top: normally determine the coverage of a
triangle (pixel won’t run fragment shader →
remains blank)

• Bottom: multisampled, each pixel contains 4
sample points (only 2 cover the triangle)

8

Multisampling

The amount of sample points can be any number

More samples giving us better coverage precision

9

Multisampling

• 2 subsamples covered by the triangle, next determine a color

• Initial guess: run the fragment shader for each covered subsample
and later average the colors of each subsample per pixel

• This case, fragment shader run twice on interpolated vertex data at
each subsample and store the resulting color in those sample points

• Does not work this way, because had to run a lot more fragment
shaders than without multisampling → reducing performance

10

Multisampling

• MSAA: fragment shader is run once per pixel (for each primitive)
regardless of how many subsamples the triangle covers

• It is run with the vertex data interpolated to the center of the pixel
and the resulting color is then stored inside each of the covered
subsamples

• Once the color buffer’s subsamples are filled (with colors of the
primitives), these colors are then averaged per pixel resulting in a
single color per pixel

• Only 2 of 4 samples were covered, the color of the pixel was averaged
with the triangle’s color and the color stored at the other 2 sample
points (in this case: the clear color)

11

Multisampling

• Result: color buffer where all the primitive edges now
produce a smoother pattern

• Each pixel, 4 subsamples (blue subsamples are
covered by the triangle and the gray sample points not)

• Within the inner region of the triangle all pixels will run the fragment
shader once where its color output it is stored in all 4 subsamples

• At the edges not all subsamples will be covered so the result of the
fragment shader is only stored at some subsamples

• Based on the amount of subsamples covered, the resulting pixel color is
determined by the triangle color and the other subsample’s stored colors

12

Multisampling

• The more sample points are covered by the
triangle, the more the pixel color is that of the
triangle:

• For each pixel, the less subsamples are part of the triangle,
the less it takes the color of the triangle

• Edges surrounded by colors slightly lighter than the actual edge color
→ causes the edge to appear smooth when viewed from a distance

13

Multisampling

• Not only color, but also the depth and stencil test now make use of
the multiple sample points

• Depth testing: the vertex’s depth interpolated to each subsample (
before the depth test)

• Stencil testing: store stencil values per subsample, instead of per pixel

• This does mean that the size of the depth and stencil buffer are now
also increased by the amount of subsamples per pixel

• This was just a basic overview of how multisampled anti-aliasing
works

• Actual logic behind the rasterizer is a bit more complicated

14

MSAA in OpenGL

15

Introduction

• MSAA in OpenGL: need a color buffer that is able to store more than
one color value per pixel (multisampling requires color per sample)

• Need a new type of buffer that can store a given amount of
multisamples and this is called a multisample buffer

16

MSAA in OpenGL

• In GLFW a multisample buffer with 𝑁 samples instead of a normal
color buffer by calling glfwWindowHint before creating the window:

17

glfwWindowHint(GLFW_SAMPLES, 4);

MSAA in OpenGL

• With glfwCreateWindow the rendering window is created, with a
color buffer containing 4 subsamples per screen coordinate

• GLFW also automatically creates a depth and stencil buffer with 4
subsamples per pixel

• This does mean that the size of all the buffers is increased by 4

18

MSAA in OpenGL

• Need to enable multisampling by calling glEnable and enabling
GL_MULTISAMPLE

• Mostly, multisampling is enabled by default so this call is redundant,
but it’s usually a good idea to enable it anyways

• This way all OpenGL implementations have multisampling enabled:

19

glEnable(GL_MULTISAMPLE);

F5…

• … smooth!

20

Off-screen MSAA

21

Introduction

• GLFW takes care of creating the multisampled buffers, enabling MSAA
is quite easy

• If we want to use our own framebuffers however, for some off-screen
rendering, have to generate the multisampled buffers ourselves →
take care of creating multisampled buffers

• Two ways we can create multisampled buffers to act as attachments
for framebuffers: texture attachments and renderbuffer attachments

22

Multisampled Texture Attachments

• To create a texture with multiple sample points, use
glTexImage2DMultisample instead of glTexImage2D with
GL_TEXTURE_2D_MULTISAPLE as its texture target:

• Second argument number of samples

• If the last argument is equal to GL_TRUE the image will use identical
sample locations and the same number of subsamples for each texel

23

glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, tex);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_RGB, width,
height, GL_TRUE);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, 0);

Multisampled Texture Attachments

• To attach a multisampled texture to a framebuffer: we use
glFramebufferTexture2D with GL_TEXTURE_2D_MULTISAMPLE:

• The currently bound framebuffer now has a multisampled color
buffer in the form of a texture image

24

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D_MULTISAMPLE, tex, 0);

Multisampled Renderbuffer Objects

• Creating a multisampled renderbuffer object is like creating textures

• Change the call to glRenderbufferStorage that is now
glRenderbufferStorageMultisample:

• Here, an extra parameter after the renderbuffer target → set the
samples (4 in this particular case)

25

glRenderbufferStorageMultisample(GL_RENDERBUFFER, 4, GL_DEPTH24_STENCIL8,
width, height);

Render to Multisampled Framebuffer
• Rendering to a multisampled framebuffer object goes automatically

• Whenever we draw anything while the framebuffer object is bound, the
rasterizer will take care of all the multisample operations

• Then end up with a multisampled color and/or depth and stencil buffer

• Multisampled buffer is a bit special → cannot directly use their buffer
images for other operations like sampling them in a shader

• A multisampled image contains much more information than a normal
image so what we need to do is downscale or resolve the image

• Resolving a multisampled framebuffer is generally done via
glBlitFramebuffer that copies a region from one framebuffer to the other
while also resolving any multisampled buffers

26

Render to Multisampled Framebuffer

• glBlitFramebuffer transfers a source region (by 4 screen-space
coordinates) to a given target region (by 4 screen-space coordinates)

• If bind to GL_FRAMEBUFFER we’re binding to both the read and draw
framebuffer targets, could also bind targets individually with
GL_READ_FRAMEBUFFER and GL_DRAW_FRAMEBUFFER

27

Render to Multisampled Framebuffer

• The glBlitFramebuffer function reads from those two targets to
determine which is the source and which is the target framebuffer

• We could then transfer the multisampled framebuffer output to the
actual screen by blitting the image to the default framebuffer like so:

28

glBindFramebuffer(GL_READ_FRAMEBUFFER, multisampledFBO);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBlitFramebuffer(0, 0, width, height, 0, 0, width, height,

GL_COLOR_BUFFER_BIT, GL_NEAREST);

F5…

• … same!

29

Render to Multisampled Framebuffer

• What if we want to do post-processing on the texture result of a
multisampled framebuffer

• Cannot directly use the texture(s) in the fragment shader

• We could blit the multisampled buffer(s) to a different FBO with a
non-multisampled texture attachment

• Then use this color attachment texture for post-processing

• Have to generate a new FBO that acts solely as an intermediate
framebuffer object to resolve the multisampled buffer into a normal
2D texture we can use in the fragment shader

30

Render to Multisampled Framebuffer

• This process looks a bit like this in pseudocode:

31

unsigned int msFBO = CreateFBOWithMultiSampledAttachments();
// then create another FBO with a normal texture color attachment
...
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, screenTexture, 0);
...
while (!glfwWindowShouldClose(window))
{

...
glBindFramebuffer(msFBO);
ClearFrameBuffer();
DrawScene();
// now resolve multisampled buffer(s) into intermediate FBO
glBindFramebuffer(GL_READ_FRAMEBUFFER, msFBO);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, intermediateFBO);
glBlitFramebuffer(0, 0, width, height, 0, 0, width, height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
// now scene is stored as 2D texture image, so use that image for post-processing
glBindFramebuffer(GL_FRAMEBUFFER, 0);
ClearFramebuffer();
glBindTexture(GL_TEXTURE_2D,screenTexture);
DrawPostProcessingQuad();
...

}

F5…

• … greyscale processing

32

Screen texture is a normal texture with just a single sample point →
some filters, e.g., edge-detection lead to jagged edges again

To accommodate, could blur the texture afterwards or create own
anti-aliasing algorithm

33

Notes

• Combine multisampling with off-screen rendering, to take care of
some extra details

• All the details are worth the extra effort though since multisampling
significantly boosts the visual quality of the scene

• Enabling multisampling can noticeably reduce performance

• As of this writing, using MSAA with 4 samples is commonly preferred

34

Custom Anti-Aliasing Algorithm

• Possible to directly pass a multisampled texture image to the shaders
instead of first resolving them

• GLSL gives us the option to sample the texture images per subsample
→ create our own anti-aliasing algorithms

35

Custom Anti-Aliasing Algorithm

• To retrieve the color value per subsample, use sampler2DMS instead
of the usual sampler2D:

• Using the texelFetch function it is then possible to retrieve the color
value per sample:

36

uniform sampler2DMS screenTextureMS;

vec4 colorSample = texelFetch(screenTextureMS, TexCoords, 3);
// 4th subsample

Questions???

37

