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Introduction

• In the basic lighting lecture: ambient lighting 

• Ambient lighting is a fixed light constant added to the overall lighting 
of a scene to simulate the scattering of light 

• In reality, light scatters in all directions with varying intensities →
indirectly lit parts should also have varying intensities (instead of a 
constant)

• Ambient occlusion tries to approximate indirect lighting by darkening 
creases, holes and surfaces that are close to each other 

• These areas are largely occluded by surrounding geometry and thus 
light rays have less places to escape → appear darker
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Introduction

• Example image of a scene with 
and without screen-space ambient 
occlusion (SSAO) 

• Notice how especially between 
the creases the (ambient) light is 
more occluded
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Introduction

• Ambient occlusion techniques expensive (take surrounding geometry into 
account) 

• Could shoot a large number of rays for each point in space to determine its 
amount of occlusion → computationally infeasible for real-time solutions 

• 2007 Crytek published a technique called screen-space ambient occlusion 
(SSAO) for use in their title Crysis

• SSAO uses a scene’s depth in screen-space to determine the amount of 
occlusion instead of real geometrical data

• It is fast compared to real ambient occlusion and gives plausible results
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Introduction

• Basics are simple: for each fragment on a screen-filled quad, calculate 
an occlusion factor based on the fragment’s surrounding depth values 

• Occlusion factor is used to reduce or nullify the fragment’s ambient 
lighting component 

• Occlusion factor obtained by taking multiple depth samples in a 
sphere (sample kernel surrounding the fragment position and 
compare samples with the current fragment’s depth value) 

• Number of samples that have a higher depth value than the 
fragment’s depth represents the occlusion factor
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Introduction

• Gray depth samples are inside geometry contribute to the total 
occlusion factor

• The more samples we find inside geometry, the less ambient lighting 
the fragment should eventually receive
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Introduction

• Quality and precision relates to the number of surrounding samples 

• If sample count too low the precision reduces (artifact ‘banding’) 

• If too high lose performance 

• Reduce amount of samples by some 
randomness into the sample kernel 

• Randomly rotate kernel each fragment 
→ high quality results with smaller samples 

• Introduces a noticeable noise pattern (fix by blurring the results)
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Introduction

• SSAO developed by Crytek had 
a certain visual style 

• Because the sample kernel 
used was a sphere, it caused 
flat walls to look gray as half of 
the kernel samples end up 
being in the surrounding 
geometry
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Introduction

• For that, will not use a sphere sample kernel, but rather a hemisphere 
sample kernel oriented along a surface’s normal vector:
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Sample Buffers
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Sample Buffers

• SSAO requires geometrical info to determine the occlusion factor:
• A per-fragment position vector

• A per-fragment normal vector

• A per-fragment albedo color

• A sample kernel

• A per-fragment random rotation vector used to rotate the sample kernel
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Sample Buffers

• Per-fragment view-space position to orient a sample hemisphere 
kernel around the fragment’s view-space surface normal → use to 
sample position buffer texture at varying offsets 

• Per-fragment kernel sample to compare their depth with the original 
fragment’s depth to determine the amount of occlusion 

• Resulting occlusion factor is then used to limit the final ambient 
lighting component 

• Including a per-fragment rotation vector to significantly reduce the 
number of samples
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Sample Buffers

• SSAO screen-space technique, calculate on fragment on a screen-
filled 2D quad, have no geometrical information of the scene  

• Render geometrical per-fragment data into screen-space textures

• Similar to deferred rendering and for that reason → SSAO is perfectly 
suited in combination 
with deferred rendering 
(already have position 
and normal vectors in 
the G-buffer)
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Implement SSAO on top of a slightly simplified version of the deferred 
renderer from the previous lecture
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Sample Buffers

• Already have per-fragment position and normal data available from 
the G-buffer, fragment shader of the geometry stage is simple:
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#version 330 core
layout (location = 0) out vec4 gPosition;
layout (location = 1) out vec3 gNormal;
layout (location = 2) out vec4 gAlbedoSpec;
in vec2 TexCoords;
in vec3 FragPos;
in vec3 Normal;
void main()
{

// store the fragment position vector in the first gbuffer texture
gPosition = FragPos;
// also store the per-fragment normals into the gbuffer
gNormal = normalize(Normal);
// and the diffuse per-fragment color, ignore specular
gAlbedoSpec.rgb = vec3(0.95);

}



Sample Buffers

• SSAO is a screen-space technique where occlusion is calculated based 
on the visible view → implement the algorithm in view-space 

• Thus, FragPos (supplied by geometry stage’s vertex shader) 
transformed to view space 

• Further calculations in view-space →make sure the G-buffer’s 
positions and normals are in view-space (multiplied by the view 
matrix as well)
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Possible to reconstruct the actual position vectors from depth values 
(see blog by Matt Pettineo)

Requires extra calculations in the shaders, but saves to store position 
data in the G-buffer which costs a lot of memory 
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https://mynameismjp.wordpress.com/2010/09/05/position-from-depth-3/



Sample Buffers

• The gPosition colorbuffer texture is configured as follows:
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glGenTextures(1, &gPosition);
glBindTexture(GL_TEXTURE_2D, gPosition);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0,

GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);



Normal-Oriented Hemisphere
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Normal-Oriented Hemisphere

• Need to generate samples oriented along the normal of a surface →
form a hemisphere 

• Difficult to generate a sample kernel for each surface normal direction 
→ generate sample kernel in tangent space (normal vector pointing in 
the positive z direction)
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Normal-Oriented Hemisphere

• Assuming having a unit hemisphere, obtain a sample kernel with a 
maximum of 64 sample values as follows:
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std::uniform_real_distribution<float> randomFloats(0.0, 1.0);
std::default_random_engine generator;
std::vector<glm::vec3> ssaoKernel;
for (unsigned int i = 0; i < 64; ++i)
{

glm::vec3 sample(randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator));

sample = glm::normalize(sample);
sample *= randomFloats(generator);
ssaoKernel.push_back(sample);
…



Normal-Oriented Hemisphere

• Currently, all samples are randomly distributed in the sample kernel, 
but better place a larger weight on occlusions close to the actual 
fragment as to distribute the kernel samples closer to the origin:
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std::uniform_real_distribution<float> randomFloats(0.0, 1.0);
std::default_random_engine generator;
std::vector<glm::vec3> ssaoKernel;
for (unsigned int i = 0; i < 64; ++i)
{

glm::vec3 sample(randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator));

sample = glm::normalize(sample);
sample *= randomFloats(generator);
ssaoKernel.push_back(sample);

…
float scale = float(i) / 64.0;

// scale samples s.t. they're more aligned to center of kernel
scale = lerp(0.1f, 1.0f, scale * scale);
sample *= scale;
ssaoKernel.push_back(sample);

}



Normal-Oriented Hemisphere

• Currently, all samples are randomly distributed in the sample kernel, 
but better place a larger weight on occlusions close to the actual 
fragment as to distribute the kernel samples closer to the origin:
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std::uniform_real_distribution<float> randomFloats(0.0, 1.0);
std::default_random_engine generator;
std::vector<glm::vec3> ssaoKernel;
for (unsigned int i = 0; i < 64; ++i)
{

glm::vec3 sample(randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator));

sample = glm::normalize(sample);
sample *= randomFloats(generator);
ssaoKernel.push_back(sample);

…
float scale = float(i) / 64.0;

// scale samples s.t. they're more aligned to center of kernel
scale = lerp(0.1f, 1.0f, scale * scale);
sample *= scale;
ssaoKernel.push_back(sample);

}



Normal-Oriented Hemisphere

• Where lerp is defined as:
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float lerp(float a, float b, float f)
{

return a + f * (b - a);
}



Normal-Oriented Hemisphere

• Gives kernel distribution that places most samples closer to its origin 
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Normal-Oriented Hemisphere

• Each of the kernel samples will be used to offset the view-space 
fragment position to sample surrounding geometry 

• Need quite a lot of samples in view-space in order to get realistic 
results, which might be too heavy on performance 

• However, can introduce some semi-random rotation/noise on a per-
fragment basis we can significantly reduce the number of samples 
required
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Random Kernel Rotations
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Random Kernel Rotations

• By introducing some randomness onto the sample kernels → reduce 
the number of samples necessary to get good results 

• Could create a random rotation vector for each fragment of a scene 
→memory-consuming 

• Better to create a small texture of random rotation vectors that tile 
over the screen

28



Random Kernel Rotations

• Create a 4x4 array of random rotation vectors oriented around the 
tangent-space surface normal:
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std::vector<glm::vec3> ssaoNoise;
for (unsigned int i = 0; i < 16; i++)
{

glm::vec3 noise(randomFloats(generator) * 2.0 - 1.0, 
randomFloats(generator) * 2.0 - 1.0, 0.0f); 

ssaoNoise.push_back(noise);
}



Random Kernel Rotations

• Then create a 4x4 texture that holds the random rotation vectors 
(make sure to set wrapping to GL_REPEAT → properly tiles over the 
screen)
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unsigned int noiseTexture; glGenTextures(1, &noiseTexture);
glBindTexture(GL_TEXTURE_2D, noiseTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 4, 4, 0, GL_RGB, GL_FLOAT, 

&ssaoNoise[0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);



The SSAO Shader
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The SSAO Shader

• SSAO shader runs on a 2D screen-filled quad that calculates the 
occlusion value for fragments (for use in the final lighting shader) 

• To store the result of the SSAO stage, create another FBO (red value):
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unsigned int ssaoFBO;
glGenFramebuffers(1, &ssaoFBO);
glBindFramebuffer(GL_FRAMEBUFFER, ssaoFBO);
unsigned int ssaoColorBuffer;
glGenTextures(1, &ssaoColorBuffer);
glBindTexture(GL_TEXTURE_2D, ssaoColorBuffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, SCR_WIDTH, SCR_HEIGHT, 0, GL_RED,

GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
ssaoColorBuffer, 0);



The SSAO Shader

• The complete process for rendering SSAO then looks a bit like this:
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// geometry pass: render stuff into G-buffer
glBindFramebuffer(GL_FRAMEBUFFER, gBuffer);
…
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// use G-buffer to render SSAO texture
glBindFramebuffer(GL_FRAMEBUFFER, ssaoFBO);
glClear(GL_COLOR_BUFFER_BIT);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, gPosition);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, gNormal);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, noiseTexture);
…

…
shaderSSAO.use();
SendKernelSamplesToShader();
shaderSSAO.setMat4("projection", projection);
RenderQuad();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// lighting pass: render scene lighting
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shaderLightingPass.use();
…
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, ssaoColorBuffer);
…
RenderQuad();



The SSAO Shader

• ShaderSSAO takes as input the relevant G-buffer textures, the noise 
texture and the normal-oriented hemisphere kernel samples:
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#version 330 core
out float FragColor;
in vec2 TexCoords;

uniform sampler2D gPosition;
uniform sampler2D gNormal;
uniform sampler2D texNoise;
uniform vec3 samples[64];
uniform mat4 projection;
// tile noise texture over screen, based on screen dimensions / noise size
const vec2 noiseScale = vec2(800.0/4.0, 600.0/4.0); // screen = 800x600

void main()
{
… 
}



The SSAO Shader

• noiseScale: want to tile noise texture all over the screen, but 
TexCoords vary between [0,1], texNoise texture will not tile at all 

35

#version 330 core
out float FragColor;
in vec2 TexCoords;

uniform sampler2D gPosition;
uniform sampler2D gNormal;
uniform sampler2D texNoise;
uniform vec3 samples[64];
uniform mat4 projection;
// tile noise texture over screen, based on screen dimensions / noise size
const vec2 noiseScale = vec2(800.0/4.0, 600.0/4.0); // screen = 800x600

void main()
{
… 
}



The SSAO Shader

• Calculate by how much have to scale the TexCoords coordinates by 
dividing the screen’s dimensions by the noise texture size:
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vec3 fragPos = texture(gPosition, TexCoords).xyz;
vec3 normal = texture(gNormal, TexCoords).rgb;
vec3 randomVec = texture(texNoise, TexCoords * noiseScale).xyz;



The SSAO Shader

• Set tiling parameters of texNoise to GL_REPEAT → random values will 
be repeated all over the screen 

• Together with fragPos and normal vector, have enough data to create 
a TBN matrix to transform any vector from tangent-space to view-
space:
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vec3 tangent = normalize(randomVec - normal * dot(randomVec, normal));
vec3 bitangent = cross(normal, tangent);
mat3 TBN = mat3(tangent, bitangent, normal);



The SSAO Shader

• Using the Gramm-Schmidt process to create an orthogonal basis, 
each time slightly tilted based on the value of randomVec

• Note, because using a random vector for constructing the tangent 
vector, there is no need to have the TBN matrix exactly aligned to the 
geometry’s surface(no need for per-vertex tangent and bitangent 
vectors)
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The SSAO Shader

• Next, iterate over each kernel samples 

• Transform the samples from tangent to view-space 

• Add them to the current fragment position and compare the 
fragment position’s depth with the sample depth stored in the view-
space position buffer: 
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float occlusion = 0.0;
for(int i = 0; i < kernelSize; ++i)
{

// get sample position
vec3 sample = TBN * samples[i]; // from tangent to view-space
sample = fragPos + sample * radius;
… 

}



The SSAO Shader

• Next, transform sample to screen-space to sample position/depth 
value as if we were rendering its position directly to the screen 

• As the vector is currently in view-space, transform it to clip-space first 
using the projection matrix uniform:
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vec4 offset = vec4(sample, 1.0);
offset = projection * offset; // from view to clip-space
offset.xyz /= offset.w; // perspective divide
offset.xyz = offset.xyz * 0.5 + 0.5; // transform to range [0.0,1.0]



The SSAO Shader

• Use them to sample the position texture:
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float sampleDepth = texture(gPosition, offset.xy).z;



The SSAO Shader

• Then check if the sample’s current depth value is larger than the 
stored depth value and if so, add to the final contribution factor:

• Add a small bias to the original fragment’s depth value (set to 0.025 in 
the example) 

• A bias is not always necessary, but helps visually tweak the SSAO 
effect and solves acne effects that might occur based on the scene’s 
complexity
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occlusion += (sampleDepth >= sample.z + bias ? 1.0 : 0.0);



The SSAO Shader

• Not finished yet, still an issue 

• If a tested fragment is aligned close to the edge of a surface, it will 
also consider depth values of surfaces behind the test surface →
these values will (incorrectly) contribute to the occlusion factor 

• Solve by a range check:
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The SSAO Shader

• Range check ensures a fragment contributes to the occlusion factor if 
its depth values is within the sample’s radius 

• We change the last line to:

• Smoothstep:
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float rangeCheck = smoothstep(0.0, 1.0, radius / abs(fragPos.z - sampleDepth)); 
occlusion+= (sampleDepth >= sample.z + bias ? 1.0 : 0.0) * rangeCheck;

float smoothstep(float edge0, float edge1, float x)
{

t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);

}

  

 



The SSAO Shader

• Final step, normalize the occlusion contribution by the size of the 
kernel and output the results 

• Note, we subtract the occlusion factor from 1.0 → directly use the 
occlusion factor to scale the ambient lighting component
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}
occlusion = 1.0 - (occlusion / kernelSize);
FragColor = occlusion;



The SSAO Shader

• Ambient occlusion shader produces 
the following texture:
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Ambient Occlusion Blur
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Ambient Occlusion Blur

• Between the SSAO pass and the lighting pass, must blur the SSAO 
texture → create another FBO for storing the blur result:
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unsigned int ssaoBlurFBO, ssaoColorBufferBlur;
glGenFramebuffers(1, &ssaoBlurFBO);
glBindFramebuffer(GL_FRAMEBUFFER, ssaoBlurFBO);
glGenTextures(1, &ssaoColorBufferBlur);
glBindTexture(GL_TEXTURE_2D, ssaoColorBufferBlur);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, SCR_WIDTH, SCR_HEIGHT, 0, GL_RED, 

GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 

ssaoColorBufferBlur, 0);



Ambient Occlusion Blur

• Tiled random vector texture gives us a consistent randomness, use 
this property as an advantage to create a very simple blur shader:
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#version 330 core
out float FragColor;

in vec2 TexCoords;

uniform sampler2D ssaoInput;

void main() 
{

vec2 texelSize = 1.0 / vec2(textureSize(ssaoInput, 0));
float result = 0.0;
for (int x = -2; x < 2; ++x) 
{

for (int y = -2; y < 2; ++y) 
{

vec2 offset = vec2(float(x), float(y)) * texelSize;
result += texture(ssaoInput, TexCoords + offset).r;

}
}
FragColor = result / (4.0 * 4.0);

}  



The SSAO Shader

• Results in a simple, but effective 
blur:
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Applying Ambient Occlusion
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Applying Ambient Occlusion

• Occlusion factors to the lighting equation: multiply the per-fragment 
ambient occlusion factor to lighting’s ambient component:
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#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D gPosition;
uniform sampler2D gNormal;
uniform sampler2D gAlbedo;
uniform sampler2D ssao;
struct Light {

vec3 Position;
vec3 Color;
float Linear;
float Quadratic;

};
uniform Light light;
void main()
{
// retrieve data from gbuffer
vec3 FragPos = texture(gPosition, TexCoords).rgb;
vec3 Normal = texture(gNormal, TexCoords).rgb;
vec3 Diffuse = texture(gAlbedo, TexCoords).rgb;
float AmbientOcclusion = texture(ssao, TexCoords).r;

// then calculate lighting as usual
vec3 ambient = vec3(0.3 * Diffuse * AmbientOcclusion);
vec3 lighting  = ambient; 
vec3 viewDir = normalize(-FragPos); // viewpos is (0.0.0)

// diffuse
vec3 lightDir = normalize(light.Position - FragPos);
vec3 diffuse = max(dot(Normal, lightDir), 0.0) * Diffuse * light.Color;
// specular
vec3 halfwayDir = normalize(lightDir + viewDir);  
float spec = pow(max(dot(Normal, halfwayDir), 0.0), 8.0);
vec3 specular = light.Color * spec;

// attenuation
float distance = length(light.Position - FragPos);
float attenuation = 1.0 / (1.0 + light.Linear * distance + light.Quadratic
* distance * distance);
diffuse *= attenuation;
specular *= attenuation;
lighting += diffuse + specular;
FragColor = vec4(lighting, 1.0);}



F5…

• … very nice!
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Note

• SSAO is a highly customizable effect that relies heavily on tweaking its 
parameters based on the type of scene 

• There is no perfect combination of parameters for every type of scene 

• Some scenes only work with a small radius, while some scenes 
require a larger radius and a larger sample count for it to look realistic 

• The current demo uses 64 samples which is a bit much, play around 
with a smaller kernel size and try to get good results
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Note

• Some parameters: using uniforms: kernel size, radius, bias and/or the 
size of the noise kernel 

• Final occlusion value to a user-defined power to increase its strength:

• Try different scenes and parameters for SSAO

• SSAO is a subtle effect that is not too clearly noticeable → adds a 
great deal of realism to properly lighted scenes
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occlusion = 1.0 - (occlusion / kernelSize);
FragColor = pow(occlusion, power);



Questions???
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