
Computer Graphics
- Lighting II

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• Last lecture, objects having a unique material of its own that reacts
differently to light

• In the real world, objects consist of several materials, e.g., a car:
exterior consists of a shiny fabric, but has also windows and tires

• The car also has diffuse and ambient colors that are not the same for
the entire object

• All by all, such an object has different material properties for each of
its different parts

• So need to extend the previous lecture by introducing diffuse and
specular maps to influence the diffuse and the specular component

2

Diffuse Maps

• Goal: set the diffuse color of an object
for each individual fragment

• Instead of a color, we use a texture
and apply a diffuse lighting (diffuse
map)

• This time, store the texture as a
sampler2D inside the Material struct
(replace the defined vec3 diffuse
color)

3

Diffuse Maps

Sampler2D is a so called opaque type, which means we can’t
instantiate these types, but only define them as uniforms.

If we would instantiate this struct other than as a uniform (like a
function parameter) GLSL could throw strange errors; the same thus

applies to any struct holding such opaque types.

4

Diffuse Maps

• Remove the ambient material color because the ambient color is in
almost all cases equal to the diffuse:

5

struct Material {
sampler2D diffuse;
vec3 specular;
float shininess;

};
…
uniform Material material;

Diffuse Maps

If you want to set the ambient colors to a different value (not the
diffuse value), keep the ambient vec3, but then it is a global color for

the entire object → better use another texture for ambient values

6

Diffuse Maps

• Again, texture coordinates are needed in the fragment shader (extra
in variable)

• Then retrieve the fragment’s ambient/diffuse color value:

7

in vec2 TexCoords;
…
vec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;
…
vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;

Diffuse Maps

• Again update the vertex data with texture coordinates, transfer them
as vertex attributes to the fragment shader, load the texture and bind
the texture to the appropriate texture unit (Lec6)

• Update the vertex shader to accept texture coordinates as a vertex
attribute and forward them to the fragment shader:

8

…
layout (location = 2) in vec2 aTexCoords;
…
out vec2 TexCoords;
…
void main()
{…
TexCoords = aTexCoords;
}

Diffuse Maps

• Before drawing the cube, assign the texture to the material.diffuse
uniform sampler and bind the container texture to this texture unit:

9

lightingShader.setInt("material.diffuse", 0);
…
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, diffuseMap);

F5…

• …much better!

10

Specular Maps

• Specular highlights looks strange because the wood material doesn’t
give such specular highlights

• If we set the specular material of the object to vec3(0.0), that would
help, but then the steel borders have also no specular highlights as
well

• Thus, we need different materials

11

Specular Maps

• Use a texture map just for specular
highlights

• Need to generate a black and white
(or colors) texture that defines the
specular intensities of each part of the
object:

12

Specular Maps

• Specular highlight is retrieved by the brightness of each pixel in the
image, e.g., black represents the color vector vec3(0.0) and gray
vec3(0.5)

• The fragment shader samples color values and multiplies it with the
light’s specular intensity → the whiter the pixel the brighter the
specular component

• Wood no specular highlights (entire wooden section of the diffuse
texture was converted to black → no specular highlight)

• Steel border has varying specular intensities (steel has, cracks not)

13

Specular Maps

Wood has specular highlights with a much lower shininess value
(more light scattering) and less impact, but as a simplification,

pretend wood doesn’t have any reaction to specular light.

14

Sampling Specular Maps

• A specular map is yet another texture (similar code as the diffuse map
code)

• Using another texture sampler in the same fragment shader: use a
different texture unit:

15

lightingShader.use();
lightingShader.setInt("material.diffuse", 0);
lightingShader.setInt("material.specular", 1);
…
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, diffuseMap);

glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, specularMap);

Sampling Specular Maps

• Update the material properties of the fragment shader to accept a
sampler2D as its specular component instead of a vec3:

16

struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;

};

Sampling Specular Maps

• Finally, sample the specular map to retrieve the fragment’s
corresponding specular intensity:

17

vec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;
vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;
vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;

vec3 result = ambient + diffuse + specular;
FragColor = vec4(result, 1.0);

Sampling Specular Maps

• Using a specular map allows to specify with enormous detail what
parts of an object actually have shiny properties and can set their
intensity

• Specular maps give an added layer of control on top of the diffuse
map

18

Sampling Specular Maps

Could also use actual colors in the specular map to not only set the
specular intensity of each fragment, but also the color of the specular

highlight.

Realistically, however, the color of the specular highlight is mostly (to
completely) determined by the light source itself so it wouldn’t

generate realistic visuals (that’s why the images are usually black and
white: we only care about the intensity).

19

F5…

• … that is better!

20

Light Casters

21

Introduction

• Used lighting so far came from a single source, a single point in space

• In the real world, several types of light that act different

• A light source that casts light upon objects is called a light caster

• In this lecture, several different types of light casters:
• Directional light

• Point light

• Spotlights

22

Directional Light

• When a light source is far away the light rays coming from the light
source are close to parallel to each other

• When a light source is modeled to be infinitely far away it is called a
directional light (light rays have the same direction)

• Example: the sun (not infinitely far away, but it is so far away that we
can perceive it as being infinitely far away)

23

Directional Light

• All the light rays from the sun are then modelled
as parallel light rays:

• All the light rays are parallel → relation of object
and light source’s does not matter (light’s
direction vector stays the same)

• Lighting calculations will be similar for each
object in the scene

24

Directional Light

• Model such a directional light by defining a light direction vector
instead of a position vector

25

struct Light {
//vec3 position;
vec3 direction;

vec3 ambient;
vec3 diffuse;
vec3 specular;

};

Directional Light

• The shader calculations remain mostly the same (now directly use the
light’s direction instead of calculating the lightDir vector with the
light’s position vector):

26

vec3 lightDir = normalize(-light.direction);

Directional Light

• Negate the light.direction vector because lighting calculations expect
the light direction to be a direction from the fragment towards the
light source

• Some people generally prefer to specify a directional light as a global
direction pointing from the light source, then negate the global light
direction vector to switch its direction

• Now a direction vector pointing towards the light source

• Be sure to normalize the vector

27

Directional Light

• To clearly demonstrate that a directional light has the same effect on
all multiple objects, use multiple objects (Lec 6):

28

for (unsigned int i = 0; i < 10; i++)
{

glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * i;
model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
lightingShader.setMat4("model", model);

glDrawArrays(GL_TRIANGLES, 0, 36);
}

Directional Light

• Don’t forget to specify the direction of the light source (note that we
define the direction as a direction from the light source):

29

lightingShader.setVec3("light.direction", -0.2f, -1.0f, -0.3f);

Directional Light

We used the light’s position and direction vectors as vec3s

Some people tend to prefer to keep all the vectors defined as vec4.

For position vectors it is important to set the w component to 1.0 (so
translation and projections are applied)

When defining a direction vector as a vec4 define the w component

to be 0.0 (don’t want translations)

30

Directional Light

Direction vectors are represented like: vec4(0.2f, 1.0f, 0.3f, 0.0f)

This can function as an easy check for light types: if the w component
is equal to 1.0 we have a light’s position vector and if w is equal to 0.0

we have a light’s direction vector:

31

if(lightVector.w == 0.0) // note: be careful for floating point errors
// do directional light calculations
else if(lightVector.w == 1.0)
// do light calculations using the light’s position (like last tutorial)

F5…

• … like light source casting

32

Point Light

• Directional lights are great for global lights
that illuminate the entire scene

• But also want several point lights scattered
throughout the scene

• A point light is a light source with a given
position that illuminates in all directions
where the light rays fade out over distance
(like light bulbs and torches)

33

Directional Light

• So far, had a light source at a given position that scatters light in all
directions

• Light rays never fade out thus making it look like the light source is
extremely strong

• In most 3D simulations simulate a light source that illuminates a
certain area close to the light source and not the entire scene

34

Directional Light

• All boxes are lit with the same intensity
(independent if they are in the back or in the
front)

• We want the container in the back to only be
slightly lit in comparison to the containers
close to the light source

35

Attenuation

• The reduction of the intensity of light over distance is attenuation

• One way to reduce the light intensity over distance is to simply use a
linear equation (linearly reduce the light intensity over the distance
thus making sure that objects at a distance are less bright)

• Such a linear function tends to look a bit fake

• In the real world, lights are generally quite bright standing close by,
but the brightness of a light source diminishes quickly at the start and
the remaining light intensity more slowly diminishes over distance

36

Attenuation

• We are thus in need of a different formula for reducing the light’s
intensity

• The following formula calculates an attenuation value based on a
fragment’s distance to the light source, which we later multiply with
the light’s intensity vector:

37

Attenuation

• 𝑑 represents the distance from the fragment to the light source

• To calculate the attenuation value we define 3 (configurable) terms:
• a constant term 𝐾𝑐, a linear term 𝐾𝑙 and a quadratic term 𝐾𝑞

• 𝐾𝑐 is usually kept at 1.0 (ensure the resulting denominator never gets
smaller than 1)

• 𝐾𝑙 is multiplied with the distance value that reduces the intensity in a
linear fashion

• 𝐾𝑞 is multiplied with the quadrant of the distance and sets a
quadratic decrease of intensity for the light source

38

Attenuation

• Due to 𝐾𝑞 the light will diminish mostly at a linear fashion until the
distance becomes large enough for the quadratic term to surpass 𝐾𝑙
and then the light intensity will decrease a lot faster

• The resulting effect is that the light is quite intense when at a close
range, but quickly loses it brightness over distance and eventually
loses its brightness at a more slower pace

39

Attenuation

• The following graph shows the
effect such an attenuation has
over a distance of 100:

• Light has the highest intensity
when the distance is small

• As the distance grows its
intensity is significantly reduced
and slowly reaches 0 intensity at
around a distance of 100

40

Choosing the right Values

• What are good or right values?

• Depends on many factors: the
environment, the distance you want a
light to cover, the type of light etc.

• Mostly it is a question of experience
and a moderate amount of tweaking

• These values are good starting points
for most lights (Ogre3d.org)

41http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-Point+Light+Attenuation

http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-Point+Light+Attenuation

Choosing the right Values

• As you can see, 𝐾𝑐 is kept at 1.0

• 𝐾𝑞 is usually quite small to cover larger
distances and 𝐾𝑞 is even smaller

42http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-Point+Light+Attenuation

http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-Point+Light+Attenuation

Attenuation

• To implement attenuation 3 extra values are needed
in the fragment shader: the constant, linear and
quadratic terms

• These are best stored in the Light struct

• Note, calculate lightDir as in the previous lecture
(not a directional light)

43

struct Light {
vec3 position;

vec3 ambient;
vec3 diffuse;
vec3 specular;

float constant;
float linear;
float quadratic;

};

Attenuation

• Then set the values in OpenGL (want the light to cover a distance of
50):

44

lightingShader.setFloat("light.constant", 1.0f);
lightingShader.setFloat("light.linear", 0.09f);
lightingShader.setFloat("light.quadratic", 0.032f);

Attenuation

• Implementing attenuation in the fragment shader: calculate an
attenuation value based on the formula and multiply this with the
ambient, diffuse and specular components

• The distance to the light source can be retrieved by the difference
vector between the fragment and the light source and take the
resulting vector’s length:

45

float distance = length(light.position - FragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance +
light.quadratic * (distance * distance));

Attenuation

• Attenuation value in is multiplied with the ambient, diffuse and
specular colors

46

ambient *= attenuation;
diffuse *= attenuation;
specular *= attenuation;

Attenuation

Could leave the ambient component such that it is not decreased
over distance, but if we were to use more than 1 light source all the

ambient components will start to stack up so in that case we want to
attenuate ambient lighting as well.

47

F5…

• front boxes are lit, boxes in the
back are dark

48

Spotlight

• A spotlight is a light source that, instead of shooting light rays in all
directions, only shoots them in a specific direction

• The result is that only the objects within a certain radius of the
spotlight’s direction are lit and everything else stays dark

• A good example of a spotlight would be a street lamp or a flashlight

49

Spotlight

• Spotlight is represented by a world-space
position, a direction and a cutoff angle that
specifies the radius of the spotlight

• For each fragment check if it is between the
spotlight’s cutoff directions (in its cone), if so,
lit the fragment

50

Spotlight

• LightDir: the vector pointing from the
fragment to the light source

• SpotDir: the direction the spotlight is
aiming at

• Phi 𝜙: the cutoff angle that specifies the
spotlight’s radius (outside this angle is not
lit)

• Theta 𝜃: the angle between the LightDir
vector and the SpotDir vector. 𝜃 should be
smaller than 𝜙 to be inside the spotlight

51

Spotlight

• Need to do calculate the dot product of two unit vectors (returns the
cosine of the angle)

• Unit vectors are the LightDir vector and the SpotDir vector

• Compare this angle with the cutoff angle 𝜙

52

Spotlight

• A flashlight is a spotlight located at the viewer’s position and usually
aimed straight ahead from the player’s perspective

• So, the fragment shader needs the spotlight’s position vector (to
calculate the light’s direction vector), the spotlight’s direction vector
and the cutoff angle:

53

struct Light {
vec3 position;
vec3 direction;
float cutOff;
…

Spotlight

• Pass the values to the shaders:

54

lightingShader.setVec3("light.position", camera.Position);
lightingShader.setVec3("light.direction", camera.Front);
lightingShader.setFloat("light.cutOff", glm::cos(glm::radians(12.5f)));

Spotlight

• Not setting an angle for the cutoff value, but calculate the cosine of
an angle

• Instead of calculating the angle between the LightDir and the SpotDir
vector, the inverse of the cosine needs to be determined (an
expensive operation)

• To save some performance, compare the cosine values

55

Spotlight

• Calculate the 𝜃 value and compare this with the cutoff 𝜙 value to
determine if the fragment is in or outside the spotlight:

56

float theta = dot(lightDir, normalize(-light.direction));

if(theta > light.cutOff) // '>’ because of the cos
{
…
}
else
{

FragColor = vec4(light.ambient * texture(material.diffuse, TexCoords).rgb, 1.0);
}

Spotlight

• Calculate the dot product between the lightDir vector and the
negated direction vector

• Be sure to normalize all the relevant vectors

57

Spotlight

if(theta > light.cutOff)?

The cosine is decreasing in the interval [0,90°], thus, the greater the
angle, the lower the cosine.

58

F5…

• … a scary spotlight!

59

F5…

• … looks strange, because the
spotlight has hard edges

• Wherever a fragment
reaches the edge of the
spotlight’s cone it is
completely dark instead of
with a smooth fade

60

Smooth/Soft Edges

• To create the smooth transitions, simulate a spotlight having an inner
and an outer cone

• Inner cone: defined in the previous section

• Outer cone: gradually dims the light from the inner to the edges of
the outer cone

61

Smooth/Soft Edges

• Therefore, define another cosine value that represents the angle
between the spotlight’s direction vector and the outer cone’s vector
(equal to its radius)

• Then, if a fragment is between the inner and the outer cone it should
calculate an intensity value between 0.0 and 1.0

• If the fragment is inside the inner cone its intensity is equal to 1.0 and
0.0 if the fragment is outside the outer cone

62

Smooth/Soft Edges

• Calculate 𝐼 (intensity)

• Goal:
• If 𝜃 ≥ 𝛾, then 𝐼 = 0

• If 𝜃 ≤ 𝜙, then 𝐼 = 1

• If 𝜃 ∈ 𝜙, 𝛾 , then 𝐼 = 1 −
𝜃−𝜙

𝛾−𝜙

63

Smooth/Soft Edges

• Calculate 𝐼 (intensity)

• Goal:
• If 𝜃 ≥ 𝛾, then 𝐼 = 0

• If 𝜃 ≤ 𝜙, then 𝐼 = 1

• If 𝜃 ∈ 𝜙, 𝛾 , then

𝐼 = 1 −
𝜃 − 𝜙

𝛾 − 𝜙
=
𝛾 − 𝜙 − 𝜃 − 𝜙

𝛾 − 𝜙

=
𝛾 − 𝜃

𝛾 − 𝜙
=
𝜃 − 𝛾

𝜙 − 𝛾

64

Smooth/Soft Edges

• To bring the three conditions together, the clamp function is used:

• Add the outerCutOff value to the Light struct

65

float theta = dot(lightDir, normalize(-light.direction));
float intensity = clamp((theta - light.outerCutOff) /

(light.cutOff - light.outerCutOff), 0.0, 1.0);

diffuse *= intensity;
specular *= intensity;

lightingShader.setFloat("light.outerCutOff", glm::cos(glm::radians(17.5f)));

F5…

• … much better!

66

Multiple Lights

67

Introduction

• Now, combine everything we learned so far (Phong shading,
materials, lighting maps and different types of light casters)

• Create a fully lit scene with 6 active light sources:
• 1 sun-like light as a directional light source

• 4 point lights scattered throughout the scene

• 1 flashlight

• To use more than one light source in the scene, we use GLSL
functions, otherwise the code quickly becomes difficult to understand

• Create a different function for each of the light types: directional
lights, point lights and spotlights.

68

Introduction

• When using multiple lights in a scene the approach is usually as
follows: a single color vector represents the fragment’s output color

• For each light, the light’s contribution color of the fragment is added
to the fragment’s output color vector

• Each light in the scene will calculate its individual impact on the
aforementioned fragment and contribute to the final output color

69

Introduction

• A general structure would look something like this:

70

out vec4 FragColor;

void main()
{
// define an output color value
vec3 output;
// add the directional light’s contribution to the output
output += someFunctionToCalculateDirectionalLight();
// do the same for all point lights
for(int i = 0; i < nr_of_point_lights; i++)

output += someFunctionToCalculatePointLight();
// and add others lights as well (like spotlights)
output += someFunctionToCalculateSpotLight();

FragColor = vec4(output, 1.0);
}

Directional Light

• Define a function in the fragment shader for the directional light:
takes a few parameters and returns the calculated directional lighting
color

• Set the required variables for a directional light source (as a struct):

71

struct DirLight {
vec3 direction;

vec3 ambient;
vec3 diffuse;
vec3 specular;

};

uniform DirLight dirLight;

Directional Light

• The dirLight uniform can be passed to a function with the following
prototype:

72

vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir);

Directional Light

Like C and C++ if we want to call a function (in this case inside the
main function) the function should be defined somewhere before the

caller’s line number.

In this case we’d prefer to define the functions below the main
function so this requirement doesn’t hold.

Therefore we declare the function’s prototypes somewhere above the
main function, just like we would in C.

73

Directional Light

• The function requires a DirLight struct and two other vectors required
for its computation:

74

vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{

vec3 lightDir = normalize(-light.direction);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// combine results
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
return (ambient + diffuse + specular);

}

Point Light

• Define a struct for contribution of a point light including its
attenuation:

75

struct PointLight {
vec3 position;

float constant;
float linear;
float quadratic;

vec3 ambient;
vec3 diffuse;
vec3 specular;

};

Point Light

• Use a pre-processor directive in GLSL to define the number of point
lights

• Then use this NR_POINT_LIGHTS constant to create an array of
PointLight structs:

76

#define NR_POINT_LIGHTS 4
uniform PointLight pointLights[NR_POINT_LIGHTS];

Point Light

Could also define one large struct (instead of different structs per
light type) that contains all the necessary variables for all the

different light types and use that struct for each function, and simply
ignore the unneeded variables.

The current approach is more intuitive and aside from a few extra
lines of code it could save up some memory since not all light types

need all variables.

77

Point Light

• The prototype of the point light’s function is as follows:

78

vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir);

Point Light

• The function takes all the data it needs as its arguments and returns a
vec3 that represents the color:

79

vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{

vec3 lightDir = normalize(light.position - fragPos);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// attenuation
float distance = length(light.position - fragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
// combine results
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
ambient *= attenuation;
diffuse *= attenuation;
specular *= attenuation;
return (ambient + diffuse + specular);

}

Spot Light

• Define a struct for the spot light:

80

struct SpotLight {
vec3 position;
vec3 direction;
float cutOff;
float outerCutOff;

float constant;
float linear;
float quadratic;

vec3 ambient;
vec3 diffuse;
vec3 specular;

};
…
uniform SpotLight spotLight;

Spot Light

• The corresponding function:

81

vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{

vec3 lightDir = normalize(light.position - fragPos);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// attenuation
float distance = length(light.position - fragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
// spotlight intensity
float theta = dot(lightDir, normalize(-light.direction));
float epsilon = light.cutOff - light.outerCutOff;
float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);
// combine results
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
ambient *= attenuation * intensity;
diffuse *= attenuation * intensity;
specular *= attenuation * intensity;
return (ambient + diffuse + specular);

}

All together

• Put it all together in the main function:

82

void main()
{

// properties
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos);

// phase 1: directional lighting
vec3 result = CalcDirLight(dirLight, norm, viewDir);
// phase 2: point lights
for(int i = 0; i < NR_POINT_LIGHTS; i++)

result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);
// phase 3: spot light
result += CalcSpotLight(spotLight, norm, FragPos, viewDir);

FragColor = vec4(result, 1.0);
}

All together

• Need to define a position vector for each of the point lights

• Define another glm::vec3 array that contains the pointlights’
positions:

83

glm::vec3 pointLightPositions[] = {
glm::vec3(0.7f, 0.2f, 2.0f),
glm::vec3(2.3f, -3.3f, -4.0f),
glm::vec3(-4.0f, 2.0f, -12.0f),
glm::vec3(0.0f, 0.0f, -3.0f)

};

All together

• Setting the uniforms for the directional light struct and the point
lights:

84

lightingShader.setVec3("dirLight.direction", -0.2f, -1.0f, -0.3f);
lightingShader.setVec3("dirLight.ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("dirLight.diffuse", 0.4f, 0.4f, 0.4f);
lightingShader.setVec3("dirLight.specular", 0.5f, 0.5f, 0.5f);
// point light 1
lightingShader.setVec3("pointLights[0].position", pointLightPositions[0]);
lightingShader.setVec3("pointLights[0].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[0].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[0].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[0].constant", 1.0f);
lightingShader.setFloat("pointLights[0].linear", 0.09);
lightingShader.setFloat("pointLights[0].quadratic", 0.032);
…

F5…

• …very neat!

85

Questions???

86

