
Computer Graphics
- Camera

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• In this lecture we set up a camera in OpenGL

• We will discuss an FPS-style camera that allows to freely move around
in a 3D scene

• We will also discuss keyboard and mouse input and finish with a
custom camera class

2

Camera/View Space

3

Introduction

• To define a camera, the following is needed

4

1. Position 2. Direction 3. Right 4. Up

Camera Position

• The camera position is a vector in world space that points to the
camera’s position:

5

glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);

Camera Position

Positive z-axis is going through the screen/camera →moving the
camera forwards means moving along the NEGATIVE z-axis

6

Camera Direction

• Next vector is the camera’s direction (pointing direction)

• For now let the camera point to the origin (0,0,0)

• Subtracting the focus point (origin) from the camera position yields
the direction:

𝑐𝑎𝑚𝑒𝑟𝑎𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑎𝑚𝑒𝑟𝑎𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠

• But the camera points towards the negative z direction, thus the signs
need to be changed:

𝑐𝑎𝑚𝑒𝑟𝑎𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠 − 𝑐𝑎𝑚𝑒𝑟𝑎𝑇𝑎𝑟𝑔𝑒𝑡

7

glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);
glm::vec3 cameraDirection = glm::normalize(cameraPos - cameraTarget);

Camera Direction

Direction is actually pointing in the reverse direction of what it is
targeting

8

Right Axis

• The right vector represents the positive x-axis of the camera space

• Use a trick to get the vector: specify an up vector that points upwards
(in world space), then do a cross product with the direction vector

• Results in a vector perpendicular to both vectors:

9

glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 cameraRight = glm::normalize(glm::cross(up, cameraDirection));

Up Axis

• Finally take the cross product of the right and direction vector:

• Now, we can create the LookAt matrix

10

glm::vec3 cameraRight = glm::normalize(cameraDirection, cameraRight);

Look At

• Using 3 perpendicular axes a matrix can be created that transforms
any vector to that coordinate space (by multiplying with the matrix)
→ LookAt matrix:

• 𝑅 .. right vector, 𝑈 .. up v., 𝐷 .. direction v., 𝑃 .. position v.

11

Look At

• Note that the position vector is inverted → translate the world in the
opposite direction of where the camera should be positioned

• Using this LookAt matrix as the view matrix effectively transforms all
the world coordinates to the view space and looks at a given target

12

Look At

• GLM already creates such a matrix

• Only specify a 1. camera position, 2. a target position and 3. an up
vector (in world space)

• GLM then creates the LookAt matrix:

13

glm::mat4 view = glm::mat4(1.0f);
view = glm::lookAt(glm::vec3(0.0f, 0.0f, 3.0f),

glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f));

Look At

• Let’s rotate the camera around the scene (keep target at (0,0,0))

• Re-calculating the x and y coordinate such that the camera moves on
a circle (rotation around the scene)

• Enlarge this circle by a pre-defined radius and create a new view
matrix each render iteration using GLFW’s glfwGetTime function:

14

glm::mat4 view = glm::mat4(1.0f);
float radius = 10.0f;
float camX = sin(glfwGetTime()) * radius;
float camZ = cos(glfwGetTime()) * radius;
view = glm::lookAt(glm::vec3(camX, 0.0f, camZ), glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f));
ourShader.setMat4("view", view);

F5…

• … the camera rotates

15

Movement

16

Walk Around

• Move the camera by user input

• First, set up a camera system, so it is useful to define some global
camera variables

• The LookAt function now becomes

17

glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);

glm::mat4 view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

Walk Around

• First, set the camera position to the previously defined cameraPos

• The direction is the current position + the direction vector (ensures
that however we move, the camera keeps looking at the target
direction)

• Let’s update the cameraPos vector when some keys are pressed

18

glm::mat4 view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

Walk Around

• Already defined a processInput function, add some new key
commands to check for:

19

void processInput(GLFWwindow *window)
{

…
float cameraSpeed = 0.05;
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)

cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)

cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)

cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)

cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

Walk Around

• Whenever one of the WASD keys is pressed, the camera’s position is
updated accordingly

• Moving forward or backwards: add or subtract the direction vector
from the position vector

• Moving sidewards: do a cross product to create a right vector and
move along accordingly (strafe effect)

20

Walk Around

Without normalizing this vector, the resulting cross product might
return differently sized vectors based on the cameraFront, resulting in
slow or fast movements based on the camera’s orientation instead of

at a consistent movement speed.

21

Walk Around

• By now, we are be able to move the camera somewhat, albeit at a
speed that’s system-specific at which you may need to adjust
cameraSpeed

22

Movement Speed

• Currently, constant value for movement speed

• With different processing powers it may happen that some people
move really fast and some really slow depending on their setup

• We want to make sure it runs the same on all kinds of hardware

23

Movement Speed

• Graphics applications and games usually keep track of a deltatime
variable that stores the time it takes to render the last frame

• Multiply all velocities with this deltaTime value

• When having a large deltaTime (last frame took), the velocity for that
frame will be a bit higher to balance it all out

• It is independent of a fast or slow PC (velocity will be balanced out)

24

Movement Speed

• To calculate the deltaTime value, keep track of 2 global variables:

• Within each frame, calculate the new deltaTime value for later use:

• The velocities can be calculated with the deltaTime:

25

float deltaTime = 0.0f;
float lastFrame = 0.0f;

float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;

void processInput(GLFWwindow *window)
{ …
float cameraSpeed = 2.5 * deltaTime;
… }

F5…

• … move around!

26

Look Around

• Moving around with the keyboard keys is not enough (we cannot turn
around) → Need mouse movements to look around

• Need to change the cameraFront vector based on the mouse input

27

Euler Angles

28

Euler Angles

• Euler angles are three values that can represent any rotation in 3D (by
Leonhard Euler)

• There are 3 Euler angles (from left to right): pitch, yaw and roll

29

Euler Angles

• Pitch: angle that depicts looking up or down

• Yaw: magnitude looking to the left or to the right

• Roll: represents the roll

• Each of the Euler angles are represented by a single value

• The combination of all of them gives any rotation vector in 3D

30

Euler Angles

• For the camera system, only care about the yaw and pitch values

• Given a pitch and a yaw value, can convert them into a 3D vector that
represents a new direction vector

31

Euler Angles

• The new camerafront vector:

32

Mouse Input

• The yaw (𝛼) and pitch (𝛽) are obtained from mouse movement

• Horizontal: yaw

• Vertical: pitch

• Idea: store the last frame’s mouse positions and in the current frame
calculate how much the mouse values changed

• The higher the horizontal/vertical difference, the more the camera
should move

33

Mouse Input

• GLFW should hide the cursor and capture it (focus the mouse cursor
and stays within the window, unless the application loses focus or
quits):

• The mouse it won’t be visible, and it should not leave the window
(e.g., FPS camera)

34

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

Mouse Input

• For pitch and yaw values, GLFW needs to listen to mouse-movement
events:

• xpos and ypos represent the current mouse positions

• Then, register the callback function with GLFW each time the mouse
moves:

35

glfwSetCursorPosCallback(window, mouse_callback);

void mouse_callback(GLFWwindow* window, double xpos, double ypos);

Mouse Input

• Mouse input for an FPS style camera, several steps to retrieve
direction vector:

• 1. Calculate the mouse’s offset since the last frame

• 2. Add the offset values to the camera’s yaw and pitch values

• 3. Add some constraints to the maximum/minimum yaw/pitch values

• 4. Calculate the direction vector

36

Mouse Input

• 1. Calculate the mouse’s offset since the last frame

37

float lastX = 800.0f / 2.0;
float lastY = 600.0 / 2.0;

Mouse Input

• 2. Add the offset values to the camera’s yaw and pitch values

• If sensitivity multiplication is omitted mouse movement would be way
too strong 38

float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed → y-coord. go from bottom to top
lastX = xpos;
lastY = ypos;

float sensitivity = 0.1f;
xoffset *= sensitivity;
yoffset *= sensitivity;

yaw += xoffset;
pitch += yoffset;

Mouse Input

• 3. Add some constraints to the maximum/minimum yaw/pitch values

• Users won’t be able to make weird camera movements

• The pitch will be constrained such that it won’t be able to look higher
than 89° (at 90° the view tends to reverse) and also not below -89°

39

if (pitch > 89.0f)
pitch = 89.0f;

if (pitch < -89.0f)
pitch = -89.0f;

Mouse Input

• 4. Calculate the direction vector

40

glm::vec3 front;
front.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
front.y = sin(glm::radians(pitch));
front.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
cameraFront = glm::normalize(front);

Mouse Input

• Run the code and you notice that the camera makes a large sudden
jump whenever the window first receives focus of the mouse cursor

• The cause is that the initial xpos and ypos were set

41

Mouse Input

• Circumvent this by defining a global bool variable to check if this is
the first time, we receive mouse input

• If so, update the initial mouse positions to the new xpos and ypos
values

42

if (firstMouse)
{

lastX = xpos;
lastY = ypos;
firstMouse = false;

}

Mouse Input

• All together:

43

void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{

if (firstMouse)
{

lastX = xpos;
lastY = ypos;
firstMouse = false;

}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;

float sensitivity = 0.1f;
xoffset *= sensitivity;
yoffset *= sensitivity;
yaw += xoffset;
pitch += yoffset;

if (pitch > 89.0f)
pitch = 89.0f;

if (pitch < -89.0f)
pitch = -89.0f;

glm::vec3 front;
front.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
front.y = sin(glm::radians(pitch));
front.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
cameraFront = glm::normalize(front);

}

F5…

• … look around

44

Zoom

• Also want to implement a zooming

• Field of view or fov defines how much can be see of the scene

• Fov smaller → scene’s projected space gets smaller (zooming in)

45

Zoom

• To zoom in, use the mouse’s scroll-wheel

• Similar to mouse movement and keyboard input, need a callback
function for mouse-scrolling:

46

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{

fov -= (float)yoffset;
if (fov < 1.0f)

fov = 1.0f;
if (fov > 45.0f)

fov = 45.0f;
}

Zoom

• When scrolling, the yoffset value represents the fov

• scroll_callback function changes the global fov variable

• 45.0f is the default fov value (constrain the zoom level between 1.0f
and 45.0f.)

47

fov -= (float)yoffset;
if (fov < 1.0f)

fov = 1.0f;
if (fov > 45.0f)

fov = 45.0f;

Zoom

• Have to upload the perspective projection matrix to the GPU each
render iteration but this time with the fov variable as its field of view:

• Register the scroll callback function:

48

projection = glm::perspective(glm::radians(fov), 800.0f/600.0f, 0.1f, 100.0f);

glfwSetScrollCallback(window, scroll_callback);

F5

• Left: start, middle: walk, right: zoom

49

Camera Class

50

Camera Class

• Just like the Shader object let us create a single header file for the
camera as it will be used in the upcoming lectures

51

Camera Class

• Check if the header is called already and include necessary headers
for OpenGL

52

#ifndef CAMERA_H
#define CAMERA_H

#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

Camera Class

• Set a few global variables (enumeration for movements and
constants)

53

enum Camera_Movement {
FORWARD,
BACKWARD,
LEFT,
RIGHT

};

const float YAW = -90.0f;
const float PITCH = 0.0f;
const float SPEED = 2.5f;
const float SENSITIVITY = 0.1f;
const float ZOOM = 45.0f;

Camera Class

• The class has some global variables to define the camera:

54

class Camera {
public:

// camera Attributes
glm::vec3 Position;
glm::vec3 Front;
glm::vec3 Up;
glm::vec3 Right;
glm::vec3 WorldUp;
// euler Angles
float Yaw;
float Pitch;
// camera options
float MovementSpeed;
float MouseSensitivity;
float Zoom;

Camera Class

• The class has a constructor defined by vectors and scalar values

55

// constructor with vectors
Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up =
glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) :
Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED),
MouseSensitivity(SENSITIVITY), Zoom(ZOOM)

{
Position = position;
WorldUp = up;
Yaw = yaw;
Pitch = pitch;
updateCameraVectors();

}

Camera Class

• Add a constructor defined by scalar values only

56

// constructor with scalar values
Camera(float posX, float posY, float posZ, float upX, float upY, float upZ,
float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)),
MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)

{
Position = glm::vec3(posX, posY, posZ);
WorldUp = glm::vec3(upX, upY, upZ);
Yaw = yaw;
Pitch = pitch;
updateCameraVectors();

}

Camera Class

• Based on the defined values, we need the lookAt matrix:

57

// returns the view matrix calculated using Euler Angles and the LookAt
Matrix
glm::mat4 GetViewMatrix()
{

return glm::lookAt(Position, Position + Front, Up);
}

Camera Class

• Like the previous process keyboard function, we update the position:

58

// processes input received from any keyboard-like input system. Accepts input
parameter in the form of camera defined ENUM (to abstract it from windowing systems)
void ProcessKeyboard(Camera_Movement direction, float deltaTime)
{

float velocity = MovementSpeed * deltaTime;
if (direction == FORWARD)

Position += Front * velocity;
if (direction == BACKWARD)

Position -= Front * velocity;
if (direction == LEFT)

Position -= Right * velocity;
if (direction == RIGHT)

Position += Right * velocity;
}

Camera Class

• Like the mouse movement function, we update the angles:

59

// processes input received from a mouse input system. Expects the offset value in both the x and y direction.
void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)

{
xoffset *= MouseSensitivity;
yoffset *= MouseSensitivity;

Yaw += xoffset;
Pitch += yoffset;

// make sure that when pitch is out of bounds, screen doesn't get flipped
if (constrainPitch)
{

if (Pitch > 89.0f)
Pitch = 89.0f;

if (Pitch < -89.0f)
Pitch = -89.0f;

}

// update Front, Right and Up Vectors using the updated Euler angles
updateCameraVectors();

}

Camera Class

• And the mouse scroll function:

60

// processes input received from a mouse scroll-wheel event. Only requires
input on the vertical wheel-axis
void ProcessMouseScroll(float yoffset)

{
Zoom -= (float)yoffset;
if (Zoom < 1.0f)

Zoom = 1.0f;
if (Zoom > 45.0f)

Zoom = 45.0f;
}

Camera Class

• Finally, we need to update the camera parameters in the private area:

61

private:
void updateCameraVectors()
{

// calculate the new Front vector
glm::vec3 front;
front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
front.y = sin(glm::radians(Pitch));
front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
Front = glm::normalize(front);
// also re-calculate the Right and Up vector
Right = glm::normalize(glm::cross(Front, WorldUp));
Up = glm::normalize(glm::cross(Right, Front));

}
};
#endif

Camera Class

• In the cpp file (render loop):

62

glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom),
(float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
ourShader.setMat4("projection", projection);

// camera/view transformation
glm::mat4 view = camera.GetViewMatrix();
ourShader.setMat4("view", view);

Camera Class

• In the processInput function, we call camera.ProcessKeyboard()

63

void processInput(GLFWwindow *window)
{

if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);

if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);

if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);

if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);

if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);

}

Camera Class

• In the mouse_/scroll_callback function, we call the
corresponding camera class function:

64

void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
…

camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// --
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{

camera.ProcessMouseScroll(yoffset);
}

Pick an Object*

65

Pick an Object

• Now we want summarize our knowledge and implement an event
that picks single cubes

• For this, we need the background of what we learned in the last
lecture

• Our goal, whenever we press ‘C’ we go in the click event, meaning
that the camera movement stops, the cursor appears, and we can
select a cube, which will be highlighted

66

Pick an Object

• We need two global variables:

• The Boolean states if we are in the selection mode

• The nearestObjectId states, which cube should be highlighted
(-1=none)

67

// click object
bool clickObject = false;
int nearestObjectId = -1;

Pick an Object

• Whenever, we click ‘C’ we go in the selection mode (cursor can be
seen):

68

void processInput(GLFWwindow *window)
{…
if (glfwGetKey(window, GLFW_KEY_C) == GLFW_PRESS)

{
clickObject = !clickObject;
if (clickObject)

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_NORMAL);
else

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
}

}

Pick an Object

• Unfortunately, whenever we press ‘C’ this function is called several
times

• Actually, we want to press ‘C’ and it stops to call this branch, until we
press again

69

Pick an Object

• For this, we use the glfwSetKeyCallback:

70

void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods);
glfwSetKeyCallback(window, key_callback);

…

void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{

if (glfwGetKey(window, GLFW_KEY_C) == GLFW_PRESS)
{

clickObject = !clickObject;
if (clickObject)

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_NORMAL);
else

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
}

}

Pick an Object

• After going into the selection mode, we want to prevent the mouse to
move the camera around:

71

void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{

…

if (!clickObject)
camera.ProcessMouseMovement(xoffset, yoffset);

}

Pick an Object

• In the selection mode, a cube should be selected with a mouse click
event:

72

void mouse_button_callback(GLFWwindow* window, int button, int action, int
mods);
glfwSetMouseButtonCallback(window, mouse_button_callback);

…

void mouse_button_callback(GLFWwindow* window, int button, int action, int
mods)
{

if (button == GLFW_MOUSE_BUTTON_LEFT && clickObject)
{

…
}

}

Pick an Object

• Remember:

73

Pick an Object

• When we click on the screen, we need the 𝑥 and 𝑦 position

• We get this by calling a GLFW function:

• After calling glfwGetCursorPos, xpos and ypos are the pixel
coordinates ([0, 𝑤𝑖𝑑𝑡ℎ], [0, ℎ𝑒𝑖𝑔ℎ𝑡])

74

double xpos = 0, ypos = 0;
glfwGetCursorPos(window, &xpos, &ypos);

Pick an Object

• We need to change them to be in the NDC

• 𝑁𝐷𝐶𝑋 0, 𝑤𝑖𝑑𝑡ℎ = [−1,1]

• 𝑁𝐷𝐶𝑌 0, ℎ𝑒𝑖𝑔ℎ𝑡 = [−1,1]

75

Pick an Object

• We need to change them to be in the NDC

• 𝑁𝐷𝐶𝑋 0, 𝑤𝑖𝑑𝑡ℎ = [−1,1]

• 𝑁𝐷𝐶𝑌 0, ℎ𝑒𝑖𝑔ℎ𝑡 = [−1,1]

76

Pick an Object

• But the screen coordinates in y direction are swapped:

77

Pick an Object

• So we transform the clicked mouse position in the NDC

• Additionally, we set 𝑧 to be −1

78

float x = (2.0f * xpos) / (float)SCR_WIDTH - 1.0f;
float y = 1.0f - (2.0f * ypos) / (float)SCR_HEIGHT;
float z = -1.0f;

Pick an Object

• Now, we have a 3D point in the NDC

• The next step is to calculate a ray in world coordinates such that it can
be used to highlight the closest cube along this ray

79

Pick an Object

• This 3D point serves now as 𝑜𝑢𝑡𝑝′

• We set 𝑤 to be 1 (we could also set another value, but then we have
to multiply the coordinates accordingly)

80

Pick an Object

• This results in:

• The next step is:

81

glm::vec4 p_prime = glm::vec4(x, y, z, 1.0f);
glm::mat4 invProjMat = glm::inverse(projection);
glm::vec4 ViewModelp = invProjMat * p_prime;

Pick an Object
• The 𝑤 component of ViewModelp may differ from 1 (but should be the

same as the other points or as the camera)
• We have now two possibilities:

• Ray/ray2 are identical, in the first case, we directly determine the ray
vector; in the second case, we determine another point in the same space
and subtract it from the camera position

82

glm::mat4 invViewMat = glm::inverse(view);

ViewModelp.w = 0;
glm::vec4 Modelp = invViewMat * ViewModelp;
glm::vec3 ray = glm::normalize(glm::vec3(Modelp));

ViewModelp.w = 1;
Modelp = invViewMat * ViewModelp;
glm::vec3 ray2 = glm::normalize(glm::vec3(Modelp)-camera.Position);

Pick an Object

• Next, we want to generate a line, starting from the camera along the
ray

• Then, we determine the distances of the line with cube’s positions

• The cube, which is closest to the line will be highlighted

83

Pick an Object

• We already know a formula, to determine the distance of a line and a
point

• Let’s have a look at another one

• Given is the point 𝑝, and the line 𝑙 𝑡 = 𝑜 + 𝑡 ∙ 𝑟, the distance is given
by:

84

Pick an Object

• Finally:

85

float dist = 0;
for (int i = 0; i < 10; i++) {

float currentDist =
glm::length(glm::cross(cubePositions[i] - camera.Position, ray)) ;
if (i == 0 || dist > currentDist)
{

dist = currentDist;
nearestObjectId = i;

}

}

Pick an Object

• In the main loop, we add in the for loop:

86

for (unsigned int i = 0; i < 10; i++)
{

…
if(i == nearestObjectId)

ourShader.setInt("numCube", 1);
else

ourShader.setInt("numCube", -1);

glDrawArrays(GL_TRIANGLES, 0, 36);
}

Pick an Object

• Now, we have to tell the shader to highlight the cube:

87

#version 330 core
…
uniform int numCube;
void main()
{
FragColor = mix(…);
if(numCube==1)

FragColor.r=1.0;
}

F5…

• … we can move around, click ‘C’
and pick cubes

88

Questions???

89

