Computer Graphics

- Coordinate Systems

J.-Prof. Dr. habil. Kai Lawonn

Infroduction

e Last lecture: learned how to use matrices to transform vertices with

 Reminder: OpenGL expects visible vertices to be in normalized device
coordinates (NDC) after each vertex shader run (x,y,z € [—1,1])

e Usually the coordinates are in a given range and in the vertex shader
these coordinates are transformed to NDC

* NDC coordinates are then given to the rasterizer to transform them to
2D coordinates/pixels on the screen

Infroduction

* Transforming coordinates to NDC and then to screen coordinates is
usually accomplished in a step-by-step fashion where object’s vertices
transformed to several coordinate systems

* The advantage: some operations/calculations are easier in certain
coordinate systems

Infroduction

* There are a total of 5 different coordinate systems that are of
Importance:
 Local space (or Object space)
World space
View space (or Eye space)
Clip space
Screen space

Spaces

Global Picture

* Transformation of the coordinates from one space to the next coordinate
space involves several transformation matrices

* Most important matrices are:
* model
* view
* projection
* Vertex coordinates (order of coordinates):
Local space (local coordinates),
World coordinates
View coordinates,

clip coordinates
(eventually) end up as screen coordinates

Global Picture

e Overview

1. Local Space 2. World Space

3. View Space

4. Clip Space

Global Picture

e Local coordinates are the coordinates of the
object relative to its local origin

* E.g., the positions of vertices of your 3D scan

1. Local Space

Global Picture

* Next step is to transform the local coordinates to
world-space coordinates (model matrix)

* If we have several objects, they life initially in their
own coordinate system

* The model transformation puts them in a global
space (world space)

/

2. World Space

Global Picture

* Next, transform the world coordinates to view-
space coordinates (view matrix) in such a way that
each coordinate is as seen from the camera or
viewer’s point of view (in direction of the negative

Z axis)

i

3. View Space

10

Global Picture

* From view space, we project them to clip
coordinates (projection matrix)

* Clip coordinates are processed to the -1.0 and 1.0
range and determine which vertices will end up
on the screen

.

4. Clip Space

11

Global Picture

* Lastly, transformation of the clip coordinates to
screen coordinates (viewport transform) that
transforms the coordinates from -1.0 and 1.0 to
the coordinate range defined by glViewport

* The resulting coordinates are then sent to the
rasterizer to turn them into fragments

A

B

5. Screen Space

12

Global Picture

e Reason for transforming the vertices into all these different spaces is
that some operations make more sense or are easier to use in certain
coordinate systems

* E.g., modifying an object makes most sense to do this in local space

* E.g., calculating operations on the object with respect to the position
of other objects makes most sense in world coordinates

* Could define one transformation matrix that goes from local space to
clip space all in one go, but that leaves us with less flexibility

Local Space

. II;)oc:;nl)space is the coordinate space that is local to the object (where object
egin

e E.g., a modelled cube from a software package (like Blender)

 Origin of cube is probably at (0,0,0) even though the cube might end up at
a different location in the final application

* Probably all the models you've created all have (0,0,0) as their initial
position

* All the vertices of your model are therefore in local space = they are all
local to the object

* The vertices of the wall we defined in the last lectures were specified as
coordinates between -0.5 and 0.5 with 0.0 as its origin = these are local
coordinates

World Space

* Import all objects directly would probably result all being stacked =
want to define individual positions for each object inside a larger
world

* World space coordinates are coordinates of all vertices relative to a
world

* Coordinates of the objects are transformed from local to world space
with the model matrix.

World Space

World Space

 Model matrix is a transformation matrix that translates, scales and/or
rotates

 E.g., transforming a house by scaling it down (it was a bit too large in
local space), translating it to a suburbia town and rotating it a bit to
the left on the y-axis

e Similar to the transformations of last lecture

N
View Space \

L.
>

3. View Space

 View space is usually referred to as the camera of OpenGL (alias
camera space/eye space)

* VView space is the result of transforming world-space coordinates to
coordinates that are seen from the camera’s point of view

* Accomplished with a combination of translations and rotations that
certain items are in front of the camera (view matrix)

Clip Space 3

4. Clip Space

* At the end of each vertex shader run, OpenGL expects NDC any
coordinate outside this range is clipped (clipped cordinates are
discarded)

* Remaining coordinates will end up as visible fragments

* Projection matrix transforms vertex coordinates from view to clip-
space, it specifies a range of coordinates e.g. -1000 and 1000 in each
dimension and it transforms them to the NDC

e With this example a coordinate of (1250, 500, 750) would not be
visible (x outside)

.

Clip Space 3

4. Clip Space

 Specifying a range of coordinates in each dimension results in a
viewing box

* This is called a frustum and each coordinate that ends up inside it will
end up on the screen

* Converting coordinates within a specified range to NDC is called
projection (projects 3D coordinates to 2D NDC)

Clip Space

4. Clip Space

If only a part of a primitive, e.g., a triangle is outside the clipping
volume OpenGL will reconstruct the triangle as one or more triangles
to fit inside the clipping range

20

.

Clip Space 3

4. Clip Space

» After the vertices are transformed to clip space a final operation called
perspective division is performed (division of x-, y-, z-components of the
position vectors by the vector’s homogeneous w component)

* |t transforms the 4D clip space coordinates to 3D NDCs (automatically
performed at the end of each vertex shader run)

* |t is after this stage where the resulting coordinates are mapped to screen
coordinates (using the settings of glViewport) and turned into fragments

* The projection matrix can take two different forms:
e orthographic projection matrix
* perspective projection matrix

Projection Matrix

Orthographic Projection

* An orthographic projection matrix defines a cube-like frustum box
that defines the clipping space where each vertex outside this box is
clipped

* Orthographic projection matrix needs the width, height and length of
the visible frustum

* All the coordinates that end up inside this frustum after transforming
them to clip space with the orthographic projection matrix won’t be
clipped

* The frustum looks a bit like a container

Orthographic Projection

* Frustum defines visible coordinates
(width, height, near, far plane)

e Coordinates outside are
clipped/discarded

* The orthographic frustum maps
coordinates inside the frustum to NDC
(w component = 1 - perspective
division doesn’t change the
coordinates) /

>

Discarded

Orthographic Projection

* To create an orthographic projection matrix, use GLM’s built-in
function glm::ortho:
glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);

» 1./2. parameters: specify the left and right coordinate of the frustum
 3./4. parameters: specify the bottom and top part of the frustum

 5./6. parameters: define the distances between the near and far
plane

* This projection matrix transforms all coordinates between these x, y
and z range values to NDCs

Orthographic Projection

* An orthographic projection matrix directly maps coordinates to the
2D plane (screen), but in reality, a direct projection produces
unrealistic results since the projection doesn’t take perspective into
account

* That is something the perspective projection matrix fixes for us

Spaces

* Example: Given are four points that yield a plane

5) 10 5) 10
P1 — O |, p2= O |,p3=1101],ps =110
10 10 10 10

* The camera is positioned on the y-axis looking to the origin

Spaces

P2

P1

P3

y2

)|

10
10

)|

28

10
10
10

5) 10 5)
pr=|9|,p2=1|92 |,p3=10],ps=
Spaces (o) = () == () -

* We want translate, scale, and rotate the plane

* We want to translate the midpoint to the origin: translate by —p
e Scaleitby 5

* Rotate around the x-axis by -30°

5 10 5 10
pr=1| D),p2=195]|,p3=1|10],ps =110
S paces (10) (10) (10) (10

* We want translate, scale, and rotate the plane

* We want to translate the midpoint to the origin: translate by —p
e Scaleitby 5

* Rotate around the x-axis by -30°

0 0 o\ /5 0 0 0\ /1 0

rotate - scale - trans = cos(—30°) —sin(—30°) O 0O 5 0 O 0 1
sin(—30°) cos(—30°) 0|0 0 5 0]]0 O

0 0 1/ \o 0 0 1/ \0o 0

0 0 —37.5
4.33 2.5 —=57.48
—2.5 4.33 —24.55

0 0 1

Q

OO OO OO O

o = O O

—7.5
—7.5
—10

Spaces

* Note: translation*rotation*scale (this is what you read in other
tutorials probably)

* That works, if the model is placed properly and you want to translate
it afterwards

5 10 5 10
pr=1| D),p2=195]|,p3=1|10],ps =110
S paces (10) (10) (10) (10

* We get: mp; = model - p; = rotate - scale - trans - p;

—12.5 12.5 —12.5
mp1 ~ | —10.83 | , mpas = | —10.83 | , mpz = | 10.83 | , mpy =
6.25 6.25 —6.25

* Note: for multiplication with a 4x4 matrix, we add a 1 to the last
component and omit it here for the 3D vector

12.5
10.83
—06.25

—12.5 12.5 —12.5 12.5
mp1 ~ | —10.83 | , mpo =~ | —10.83 | , mps =~ | 10.83 | , mpg =~ | 10.83
6.25 6.25 —6.25 —6.25

Spaces

AZ

mp3

33

—12.5 12.5 —12.5 12.5
mp; ~ | —10.83 | , mpo =~ | —10.83 | , mps = | 10.83 | , mpgy = | 10.83
6.25 6.25 —6.25 —6.25

Spaces
* The camera is positioned on the y-axis
Az
/(1 0 0 0
. 100 1 O ,
view = | o 1 5) 7
\0 0 0 1) i

—12.5 12.5 —12.5 12.5
mp; ~ | —10.83 | , mpo =~ | —10.83 | , mps = | 10.83 | , mpgy = | 10.83
6.25 6.25 —6.25 —6.25

* We get: vmp; = view - mp;

Spaces

—12.5 12.5 —12.5 12.5
vmpy ~ 6.25 , VMpo ~ 6.25 ,omps ~ | —6.25 | , vmps =~ | —6.25
—10.83 —10.83 10.83 10.83

—12.5 12.5 —12.5 12.5
vmpy =~ 6.25 , VMpo ~ 6.25 ,ompg =~ | —6.25 | , vmpyg = | —6.25
S p O C es —10.83 —10.83 10.83 10.83

e -15, 15: left and right coordinate
of the frustum

* -10,10: bottom and top part of
the frustum

e -12,12: distances between the
near and far plane :

36

—12.5 12.5 —12.5 12.5
vmpy =~ 6.25 , UMpo = 6.25 ,ompg =~ | —6.25 | , vmpyg = | —6.25
S p C] C eS —10.83 —10.83 10.83 10.83

* Projection matrix

(2 0 0 __right+left o
right =left 2 Qﬁfi&l&’iﬁ
ro] = 0 top—bottom 0 T ton—bottom
prog 0 0 —2 __Jfar+near
far—near far—near
\ 0 0 0 1)
(1/15 0 0 0\
| o 1/10 0 0
“l o 0 -1/12 0
\ o0 0o 0 1

37

~12.5 12.5 ~12.5 12.5

vmpy =~ 6.25 , UMpy ~ 6.25 ,ompg ~ | —6.25 | , vmpyg =~ | —6.25

S p qces —10.83 —10.83 10.83 10.83
e We get: puvmp; ‘= proj - vmp;

—0.83 0.83 —0.83 0.83
pvmpy ~ | 0.63 |, pvmps =~ | 0.63 |, pvmps =~ | —0.63 | , pvmpg = | —0.63
0.90 0.90 —0.90 —0.90

Spaces

 All together:

float vertices[] =

// positions

5.f, 5.f, l10.0f,
5.f, 10.f, 10.0f,
l10.f, 10.f, 10.0f,
l10.f, 5.f, 10.0f,

¥

{

// texture coords
1.0f, 1.0f, // top right
1.0f, 0.0f, // bottom right
0.0f, 0.0f, // bottom left
0.0f, 1.0f // top left

39

Spaces

 All together:

:mat4d model =
:matd view= glm:
:matd projection

glm:
glm:
glm:

model
model
model

glm:
glm:
glm:
glm:
view

projection

:vecd
:vecd
:vecd
:vecd
= glm:

glm:
glm:
glm:

rl
r2
r3
r4

glm: :ortho(-15.0f, 15.0f,

:rotate(model, glm:
:scale(model, glm::vec3(5.0));
:translate(model, glm::vec3(-7.5F,

glm:
glm:
glm:
glm:

glm::matd4(1.0f);

:matd(1.0f);
= glm::mat4(1.0f);

:vec4(1,0,0,0);
:vec4(0, 0, 1, 0);
:vecd4(o, 1, 0, 9);
:vec4(o, 0, 0, 1);
:mat4(rl, r2, r3, rd);

:radians(-30.0f), glm:

-7.5F,

-10.0f, 10.0f,

:vec3(1.0, 0.0, 0.0));

-10.0f));

-12.0f, 12.0f);

40

Spaces

 All together:

glGetUniformLocation(ourShader.ID, "model");
glGetUniformLocation(ourShader.ID, "view");
glGetUniformLocation(ourShader.ID, "projection");

unsigned int modelloc
unsigned int viewloc
unsigned int projlLoc

glUniformMatrix4fv(modellLoc, 1, GL FALSE, &model[0][0]);
glUniformMatrix4fv(viewLoc, 1, GL FALSE, &view[0][0]);
glUniformMatrix4fv(projLoc, 1, GL FALSE, &projection[0][0]);

41

Spaces

 All together:

#version 330 core

layout (location = @) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()

{
gl Position = projection * view * model * vec4(aPos, 1.0);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);

e ...finally done

43

Perspective Projection

* In real life objects that are farther
away appear much smaller

* This weird effect is called
perspective

* Perspective is especially
noticeable when looking down the
road

44

Perspective Projection

* Due to perspective the lines seem to coincide the farther they are
away

* This is the effect the perspective projection matrix tries to mimic

* Maps a frustum range to clip space and manipulates the w value of
each vertex coordinate

Perspective Projection

* The further away a vertex coordinate is from the viewer, the higher is
W

* The coordinates are transformed to clip space are in the range -w to
w (anything outside this range is clipped)

* OpenGL requires NDC as the final vertex shader output, thus in clip
space, perspective division is applied to the clip space coordinates:

x/w
out = | y/w
z/w

x/w
out = | y/w
z/w

Perspective Projection

* Each component is divided by its w component
* A perspective projection matrix can be created in GLM as follows

glm: :mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH
/ (float)SCR _HEIGHT, ©.01f, 100.0f);

* glm::perspective creates a large frustum that defines the visible space
(outside clipped)

Perspective Projection

* A perspective frustum can be visualized as
a non-uniformly shaped box from where
each coordinate inside this box will be
mapped to a point in clip space

Perspective Projection

Far P/ane

e 1. parameter: fov (field of view) value and
sets how large the viewspace is (usually set
to 45°)

e 2. parameter: aspect ratio (calculated by
dividing the viewport’s width by its height)

Discarded

 3./4. parameter: near and far plane(usually
0.1f and 100.0f)

e All the vertices between the near and far
plane and inside the frustum will be
rendered

glm: :mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH
/ (float)SCR HEIGHT, ©.01f, 100.0f);

Perspective Projection

Too high near values (like 10.0f) results in clipping coordinates close
to the camera (between 0.0f and 10.0f)

Gives a familiar visual result in videogames in that you can see
through certain objects if you move too close to them

50

Perspective Projection

* Let us go back to our example:
 We want translate, scale, and rotate the plane
We want to translate the midpoint to the origin: translate by —p
Scale it by 5
Rotate around the x-axis by -30°
Translate it along the y-axis by 35 units

D 10 9 10

10 10 10 10

Perspective

vmpy ~

(—12.5 12.5 —12.5 12.5
6.25 |, vmpy = 6.25 ,vmpg ~ | —6.25 |, vmpg = | —6.25

—15.83)

\—45.83)

\—24.17)

\—24.17

)

52

—12.5 12.5 —12.5 12.5
. vmp; ~ 6.25 , UMpo ~ 6.25 ,omps ~ | —6.25 |, vmps = | —6.25
Perspec-l-lve —45.83 —45.83 —24.17 —24.17

* Projection matrix (aspect=800/600=4/3, fov=45°, far=-near=12):

1
/aspect-tan(fov/Q) (1) 0 0 \
- 0 0 0
pro) = tan(fov/2) fartnear > farmear
0 0 ~ far—near far—near
\ 0 0 —1 0 }
1
(e) 0D
= 0 V2-1 00

0 0
\ 0 0 -1 0

Perspective (

* We get:
—22.63
15.09
pvmp; = 19

, pPUmp2 ~

—12.5
6.25

pump; ‘= proj - vmp;

/22.63\
15.09
12

\45.82 /

12.5
, UMpo ~ 6.25
—45.83

—12.5 12.5
,omps ~ | —6.25 |, vmps = | —6.25
—24.17 —24.17

—22.63 22.63 —22.63 22.63
15.09 15.09 —15.09 —15.09
. pvmpy ~ 19 y pumpa ~ 19 , pumps ~ 192 , pumpy ~ 192
P ersS p e C'|'|\/e 45.82 45.82 24.17 24.17
* In clip space the coordinates are finally divided by w:

—0.49 0.49 —0.94 0.94
outp1 ~ | 0.33 |, outps = | 0.33 | , outps = | —0.62 | , outpy =~ | —0.62
0.26 0.26 0.50 0.50

Perspective Projection

 All together:

glm: :mat4 model= glm::mat4(1l.0f);
glm::mat4 view= glm::mat4(l.0f);
glm::mat4 projection = glm::mat4(1.0f);

model = glm::translate(model, glm::vec3(0.0f, -35.0f, 0.0f));

model = glm::rotate(model, glm::radians(-30.0f), glm::vec3(1.0, 0.0, 0.0));
model = glm::scale(model, glm::vec3(5.0));

model = glm::translate(model, glm::vec3(-7.5f, -7.5f, -10.0f));

glm::vec4 rl = glm::vec4(1,0,0,0);
glm::vecd r2 = glm::vec4(0, 0, 1, 0);
glm::vec4 r3 = glm::vec4(0, 1, 0, 0);
glm::vecd r4 = glm::vecd4(0, 0, 0, 1);
view = glm::mat4(rl, r2, r3, rd);

projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH /
(float)SCR_HEIGHT, -12.0f, 12.0f);

FS

<))
-
O
©
°

57

More 3D

Infroduction

* So far working with a 2D plane in 3D space
* Now extend it to a 3D cube

* To render a cube, need a total of 36 vertices (6 faces *
2 triangles * 3 vertices each)

float vertices[]

-0.
Q.
Q.
Q.

-0.

.5f,

(ORI

5f,
5f,
5f,
5f,
5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
-0.
-0.
.5f,

5f,
5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

-0.
-0.
.5f,
.5f,
.5f,
.5f,

5f,
5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

-0.
-0.
-0.
-0.
-0.
-0.

OO0

5f,
5f,
5f,
5f,
5f,
5f,

.5f,
oSy
.5f,
.5f,
.5f,
oSiry

.5f,
.5f,
.5f,
.5f,
oSiry
.5f,

.5f,
.5f,
.5f,
.5f,
.5f,
.5f,

.5f,
.5f,
oSiry
.5f,
oSiry
.5f,

.5f,
.5F,
.5f,
.5F,
.5f,
.5F,

OO FrRrRFRPREFRPO P OO0 RrK P OO R OO rRrRFRPREFEPO OO rRrRFRPRRFRPO

OO rRrRFRPRFRPO

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

P OOO®OR K OO0 RFRPEFEFO OO rRrPFRPPFRPO OrRrRFPFRPOO OrRrPFrPRPFRPROO

P OO0 RrR

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.0f,
.of,

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.0f};

Infroduction

* Now, we want to rotate the cube:

model = glm::rotate(model, (float)glfwGetTime(), glm::vec3(0.5f, 1.0f, 0.0f));

* And draw the cube using glDrawArrays, but this time with a count of
36 vertices:

glDrawArrays(GL_TRIANGLES, 0, 36);

* A rotating cube

61

Infroduction

* Some sides of the cubes are being drawn over other sides

* This happens because when OpenGL draws the cube triangle-by-
triangle, it will overwrite its pixels even though something else

might’ve been drawn there before

* Because of this, some triangles are drawn on top of each other while
they are not supposed to overlap

Infroduction

* Luckily, OpenGL stores depth information in a buffer called the z-
buffer that allows OpenGL to decide when to draw over a pixel and
when not to

e Using the z-buffer we can configure OpenGL to do depth-testing

/-Buffer

 GLFW automatically creates such a buffer

* The depth is stored within each fragment (z value) and whenever the
fragment wants to output its color, OpenGL compares its depth values
with the z-buffer and if the current fragment is behind the other
fragment it is discarded, otherwise overwritten

* This process is called depth testing and is done automatically by
OpenGL

/-Buffer

* To make sure OpenGL actually performs the depth testing we need to
enable it (disabled by default) by using glEnable

 glEnable and glDisable functions allow to enable/disable certain
functionalities in OpenGL

* That functionality is then enabled/disabled until another call is made
to disable/enable it

* To enable depth testing by enabling GL_ DEPTH_TEST:

glEnable(GL_DEPTH TEST);

/-Buffer

* By using a depth buffer, also want to clear the depth buffer before
each render iteration (otherwise the depth information of the
previous frame stays in the buffer)

* Just like clearing the color buffer, clear the depth buffer by specifying
the DEPTH_BUFFER_BIT bit in the glClear function:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

FS

* A rotating cube with
correct depth

67

More Cubes

* Let’s display 10 cubes on screen with T mierest o 0t o.0f, 0.6F),
different positions and rotations e veca (e oo)

* Only thing we have to change for each = gt Sy el
object is its model matrix e iveca(15 et alee

 First, define a translation vector for each ﬁii:ﬁiié 12?? éﬁgiﬁ Iij?iij
cube that specifies its position in world y OHEERTR B S
space.

e Define 10 cube positions in a glm::vec3 array

More Cubes

* Within the game loop call the gIDrawArrays function 10 times, but
each with a different model matrix

glBindVertexArray(VAO);

for (unsigned int i = 0; 1 < 10; i++)

{

glm::mat4 model = glm::matd4(l.0f);

model = glm::translate(model, cubePositions[i]);

float angle = 20.0f * i;

model = glm::rotate(model, glm::radians(angle), glm::vec3(l.0f, 0.3f, 0.5));
ourShader.setMat4("model", model);

glDrawArrays(GL_TRIANGLES, 0, 36);

}

®*..SOweadre many now!

70

Projections*

Infroduction

* Prerequisite: Camera in origin, view along the (negative) z-axis
e Goal: 2D coordinates in the view plane
* Near and far defined along z-axis
* Orthographic:
* The z-values are of no relevance

* Perspective:
e The Pixel values result from the intercept theorem (later)

Orthographic

* We have parallel rays from the point
on the view plane

* With a given point, what are the
NDC in the view plane?

e Again, the box is defined with left,
right; bottom, top; near, far

¢

¢

Orthographic -

* Exemplarily, we have a closer look a the x-coordinate

* If the x component is equal the left value, then it should become -1
¢ NDCX(left) — _1
* If the x component is equal the right value, then it should become 1

* In between it should be linearized
e NDCy(x) =mx+n

O

NDCx(right) =1

Orthographic NDCx(x) = mx +
1 —(=1)
 right — left
B 2
 right — left
2-left
ND left) = —1 = —1—
Cx(left) - right — left
—right + left — 2 - left
= n = ,
right — left
—right — left
L rig ef

right — left

75

Orthographic

NDCX(ZC) —

2

right — leftaj

NDCx(right) =1
NDCy(x) =mx +n

- right + left
right — left

Orthographic
2 right + left
NDC = —
x (@) right — leftx right — left
2 top + bottom
ND = —
Cy (@) top — bottomm top — bottom
—2
NDCy(z) = , far 4+ near

~ far — near B far — near

77

Orthographic

NDCy (x) = — 2 x_m.ght+left
right — left right — left
2
NDCy (x) = . top + bottom
top — bottom top — bottom
—2
NDCy(z) = , far 4+ near

~ far — near B far — near

NDC,(—near) = —1

[Zminr Zmax] — [—near,—far]

78

Orthographic

proj =

/

2

right—left

0
0
0

0
2

top—bottom

0
0

2 right + left
NDC = —
x(@) right — leftx right — left

B 2 top + bottom
NDCy (z) = top — bottomx top — bottom
—2 far + near
ND = —
Cz(w) far — nearx far — near
0 __right+tleft \
right—left
__top+bottom
top—bottom
—2 . f%fr%—nea,fr
far—near far—near

0 1)

79

Perspective

* We have rays starting from one
origin (camera)

* With a given point, what are the
NDC in the view plane?

e Again, the box is defined with left,
right; bottom, top; near, far

Perspective

J\N Plane
|

Pl

Dy

Py _ Py
— Pz n
py=mn- -

81

Perspective o .

—Pz

* Note, that we want the coordinates to be in NDC [-1,1] and that the
values are divided by p,,, at the end

NDCy (x) 2 top + bottom
x) = x —
Y top — bottom top — bottom
2 n-p, top+ bottom

NDCy(—n - = -
Y(Dy /pz) top — bottom —p, top — bottom

1 2-n-p, . p.-(top+ bottom)
—p, \ top — bottom | top — bottom

Perspective

NDCx (pz,pz) =

NDCY(pyapz) —

1 2:n-py | Pz (right +left)
—D2 (fr’ight —left right — left)

1 2:n-py, Dz (top+ bottom)
—D» (top — bottom top — bottom

)

83

NDCx (pz,ps) = . :
X (Pz, p2) —D, (mght — left + right — left

Perspective (gl o)

NDCy (py,p-) = -

top — bottom top — bottom

* Dividing the values by w is not possible with a matrix, thus, the
projection matrix is of the form

2n 0 right+left 0
(Tight—left right—left \
0 2n __top+bottom 0
pfroj — top—bottom top—bottom
0 0 ? 7

\ 0 0 —1 0/

NDCx (pz,ps) = . :
X (Pz, p2) —D, (mght — left + right — left

Perspective (gl o)

NDCy (py,p-) = -

top — bottom top — bottom

* Dividing the values by w is not possible with a matrix, thus, the
projection matrix is of the form

2n 0 right+left 0
/fright—left fr'zlghtgleft \
2n __top+tbottom
pfroj — 0 top—bottom top—bottom 0
0 0 A B

\ 0 0 1 0/

NDC,(—n)/n = —1
NDC,(—f)/f =1

Perspec-l-ive NDC,(z) = (Az+ B)/(—z)
NDCy(—n) = —AntB_
n
NDCz(—f) = _A°}C+B =1
= —-Antn=-A-f—f
:>A:—f+n
f—n

2-f-n

Perspective

* Finally:

proj =

(

2n

right—left

0

0
0

0
2n

right+left

top—bottom

0
0

right—left
top+bottom

~ top—bottom

_fHn
f—n
—1

-

N
k.HO
N

ojﬁ-
3

N~ d

2n 0 right+left
right—left

right—left
o 0 2n
Perspective T

__top+bottom
top—bottom top—bottom
0 0 _ftn
f—n
\ 0 0 ~1

e ...but we knew another representation?

1
/aspect-tan(fov/Q) (1) 0 0 \
0 0 0
roj) = tan(fov/2)
o : 0" fortaeer 3o
\ 0 0 1

o)

Perspective

* View plane 1
width 5 ta
ar = -ar r
height

89

Perspective

tan(a/2) = © = !
an (o = — n =
n tan(a/2)
py _ Py
—Pz T
/ Py
py = —Nn- ZJ_Z

View Plane

py \
!

90

Perspective

* p'y should be in the allowed interval
View Plane

|—1,1] so that’s ok y
* p',. should be in the allowed interval ” \

|—ar, ar], we divide it by ar thenitisin
|—1,1] so that’s ok

p/ _ 1 _ Dy

Y —p, tan(a/2)
;. 1 Px
paj T)

—p, ar-tan(a/2)

Perspective

* This yields:

proj =

1
/ aspect-tan(fov/2)
0

0

\ 0

0
0

__ far+near

far—near

—1

0
0

__2-far-near

far—near

0

)

/

Dz

—Pz

ar - tan(a/2)
Py

—Pz

| tan(a/2)

Depth

proj =

* Non-linear relationship of z' and z

* High values = little precision

proj -

&

Y

1)

2fn

1

z2(f —n)

aspect-tan(fov/2)

0

0
0

Y

0 0
1 0
tan(fov/2)

0 . far+near

far—near

0 —1

1

0
0

__2-far-near
far—near

0

QO

Q
§
s
stion
g7
PP

