
Computer Graphics
- Coordinate Systems

J.-Prof. Dr. habil. Kai Lawonn



Introduction

• Last lecture: learned how to use matrices to transform vertices with

• Reminder: OpenGL expects visible vertices to be in normalized device 
coordinates (NDC) after each vertex shader run (𝑥, 𝑦, 𝑧 ∈ [−1,1])

• Usually the coordinates are in a given range and in the vertex shader 
these coordinates are transformed to NDC 

• NDC coordinates are then given to the rasterizer to transform them to 
2D coordinates/pixels on the screen
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Introduction

• Transforming coordinates to NDC and then to screen coordinates is 
usually accomplished in a step-by-step fashion where object’s vertices 
transformed to several coordinate systems 

• The advantage: some operations/calculations are easier in certain 
coordinate systems
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Introduction

• There are a total of 5 different coordinate systems that are of 
importance:
• Local space (or Object space)

• World space

• View space (or Eye space)

• Clip space

• Screen space
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Spaces
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Global Picture
• Transformation of the coordinates from one space to the next coordinate 

space involves several transformation matrices 

• Most important matrices are: 
• model 
• view 
• projection 

• Vertex coordinates (order of coordinates): 
• Local space (local coordinates), 
• World coordinates 
• View coordinates,
• clip coordinates 
• (eventually) end up as screen coordinates
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Global Picture

• Overview
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Global Picture

• Local coordinates are the coordinates of the 
object relative to its local origin

• E.g., the positions of vertices of your 3D scan
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Global Picture

• Next step is to transform the local coordinates to 
world-space coordinates (model matrix)

• If we have several objects, they life initially in their 
own coordinate system

• The model transformation puts them in a global 
space (world space)
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Global Picture

• Next, transform the world coordinates to view-
space coordinates (view matrix) in such a way that 
each coordinate is as seen from the camera or 
viewer’s point of view (in direction of the negative 
𝑧 axis)
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Global Picture

• From view space, we project them to clip 
coordinates (projection matrix) 

• Clip coordinates are processed to the -1.0 and 1.0 
range and determine which vertices will end up 
on the screen
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Global Picture

• Lastly, transformation of the clip coordinates to 
screen coordinates (viewport transform) that 
transforms the coordinates from -1.0 and 1.0 to 
the coordinate range defined by glViewport

• The resulting coordinates are then sent to the 
rasterizer to turn them into fragments
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Global Picture

• Reason for transforming the vertices into all these different spaces is 
that some operations make more sense or are easier to use in certain 
coordinate systems

• E.g., modifying an object makes most sense to do this in local space

• E.g., calculating operations on the object with respect to the position 
of other objects makes most sense in world coordinates

• Could define one transformation matrix that goes from local space to 
clip space all in one go, but that leaves us with less flexibility
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Local Space
• Local space is the coordinate space that is local to the object (where object 

begin)
• E.g., a modelled cube from a software package (like Blender) 
• Origin of cube is probably at (0,0,0) even though the cube might end up at 

a different location in the final application 
• Probably all the models you’ve created all have (0,0,0) as their initial 

position 
• All the vertices of your model are therefore in local space → they are all 

local to the object
• The vertices of the wall we defined in the last lectures were specified as 

coordinates between -0.5 and 0.5 with 0.0 as its origin → these are local 
coordinates
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World Space

• Import all objects directly would probably result all being stacked →
want to define individual positions for each object inside a larger 
world 

• World space coordinates are coordinates of all vertices relative to a 
world 

• Coordinates of the objects are transformed from local to world space 
with the model matrix.
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World Space

• Model matrix is a transformation matrix that translates, scales and/or 
rotates 

• E.g., transforming a house by scaling it down (it was a bit too large in 
local space), translating it to a suburbia town and rotating it a bit to 
the left on the y-axis 

• Similar to the transformations of last lecture
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View Space

• View space is usually referred to as the camera of OpenGL (alias 
camera space/eye space) 

• View space is the result of transforming world-space coordinates to 
coordinates that are seen from the camera’s point of view 

• Accomplished with a combination of translations and rotations that 
certain items are in front of the camera (view matrix)

17

             



             

Clip Space

• At the end of each vertex shader run, OpenGL expects NDC any 
coordinate outside this range is clipped (clipped cordinates are 
discarded)

• Remaining coordinates will end up as visible fragments 

• Projection matrix transforms vertex coordinates from view to clip-
space, it specifies a range of coordinates e.g. -1000 and 1000 in each 
dimension and it transforms them  to the NDC

• With this example a coordinate of (1250, 500, 750) would not be 
visible (x outside)
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Clip Space

• Specifying a range of coordinates in each dimension results in a 
viewing box 

• This is called a frustum and each coordinate that ends up inside it will 
end up on the screen 

• Converting coordinates within a specified range to NDC is called 
projection (projects 3D coordinates to 2D NDC)
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Clip Space

If only a part of a primitive, e.g., a triangle is outside the clipping 
volume OpenGL will reconstruct the triangle as one or more triangles 

to fit inside the clipping range
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Clip Space

• After the vertices are transformed to clip space a final operation called 
perspective division is performed (division of x-, y-, z-components of the 
position vectors by the vector’s homogeneous w component) 

• It transforms the 4D clip space coordinates to 3D NDCs (automatically 
performed at the end of each vertex shader run) 

• It is after this stage where the resulting coordinates are mapped to screen 
coordinates (using the settings of glViewport) and turned into fragments

• The projection matrix can take two different forms:
• orthographic projection matrix

• perspective projection matrix
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Projection Matrix

22



Orthographic Projection

• An orthographic projection matrix defines a cube-like frustum box 
that defines the clipping space where each vertex outside this box is 
clipped 

• Orthographic projection matrix needs the width, height and length of 
the visible frustum 

• All the coordinates that end up inside this frustum after transforming 
them to clip space with the orthographic projection matrix won’t be 
clipped

• The frustum looks a bit like a container
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Orthographic Projection

• Frustum defines visible coordinates 
(width, height, near, far plane)

• Coordinates outside are 
clipped/discarded 

• The orthographic frustum maps 
coordinates inside the frustum to NDC 
(w component = 1 → perspective 
division doesn’t change the 
coordinates)
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Orthographic Projection

• To create an orthographic projection matrix, use GLM’s built-in 
function glm::ortho:

• 1./2. parameters: specify the left and right coordinate of the frustum 

• 3./4. parameters: specify the bottom and top part of the frustum

• 5./6. parameters: define the distances between the near and far 
plane 

• This projection matrix transforms all coordinates between these x, y 
and z range values to NDCs

25

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);



Orthographic Projection

• An orthographic projection matrix directly maps coordinates to the 
2D plane (screen), but in reality, a direct projection produces 
unrealistic results since the projection doesn’t take perspective into 
account

• That is something the perspective projection matrix fixes for us
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Spaces

• Example: Given are four points that yield a plane

• The camera is positioned on the y-axis looking to the origin
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Spaces

28



Spaces

• We want translate, scale, and rotate the plane

• We want to translate the midpoint to the origin: translate by − ҧ𝑝

• Scale it by 5

• Rotate around the x-axis by -30°
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Spaces

• We want translate, scale, and rotate the plane

• We want to translate the midpoint to the origin: translate by − ҧ𝑝

• Scale it by 5

• Rotate around the x-axis by -30°
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Spaces

• Note: translation*rotation*scale (this is what you read in other 
tutorials probably)

• That works, if the model is placed properly and you want to translate 
it afterwards
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Spaces

• We get:

• Note: for multiplication with a 4x4 matrix, we add a 1 to the last 
component and omit it here for the 3D vector
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Spaces
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Spaces

• The camera is positioned on the y-axis
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Spaces

• We get:
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Spaces

• -15, 15: left and right coordinate 
of the frustum 

• -10,10: bottom and top part of 
the frustum

• -12,12: distances between the 
near and far plane 
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Spaces

• Projection matrix
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Spaces

• We get:
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Spaces 

• All together:
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float vertices[] = {
// positions          // texture coords
5.f,  5.f, 10.0f,   1.0f, 1.0f, // top right
5.f, 10.f, 10.0f,   1.0f, 0.0f, // bottom right
10.f, 10.f, 10.0f,   0.0f, 0.0f, // bottom left
10.f,  5.f, 10.0f,   0.0f, 1.0f  // top left 
};



Spaces 

• All together:
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glm::mat4 model = glm::mat4(1.0f); 
glm::mat4 view= glm::mat4(1.0f);
glm::mat4 projection = glm::mat4(1.0f);

model = glm::rotate(model, glm::radians(-30.0f), glm::vec3(1.0, 0.0, 0.0));
model = glm::scale(model, glm::vec3(5.0));
model = glm::translate(model, glm::vec3(-7.5f, -7.5f, -10.0f));

glm::vec4 r1 = glm::vec4(1,0,0,0);
glm::vec4 r2 = glm::vec4(0, 0, 1, 0);
glm::vec4 r3 = glm::vec4(0, 1, 0, 0);
glm::vec4 r4 = glm::vec4(0, 0, 0, 1);
view = glm::mat4(r1, r2, r3, r4);

projection = glm::ortho(-15.0f, 15.0f, -10.0f, 10.0f, -12.0f, 12.0f);



Spaces 

• All together:
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unsigned int modelLoc = glGetUniformLocation(ourShader.ID, "model");
unsigned int viewLoc = glGetUniformLocation(ourShader.ID, "view");
unsigned int projLoc = glGetUniformLocation(ourShader.ID, "projection");

glUniformMatrix4fv(modelLoc, 1, GL_FALSE, &model[0][0]);
glUniformMatrix4fv(viewLoc,  1, GL_FALSE, &view[0][0]);
glUniformMatrix4fv(projLoc,  1, GL_FALSE, &projection[0][0]);



Spaces 

• All together:
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#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{

gl_Position = projection * view * model * vec4(aPos, 1.0);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);

}



F5…

• …finally done
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Perspective Projection

• In real life objects that are farther 
away appear much smaller 

• This weird effect is called 
perspective 

• Perspective is especially 
noticeable when looking down the 
road
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Perspective Projection

• Due to perspective the lines seem to coincide the farther they are 
away 

• This is the effect the perspective projection matrix tries to mimic

• Maps a frustum range to clip space and manipulates the w value of 
each vertex coordinate 
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Perspective Projection

• The further away a vertex coordinate is from the viewer, the higher is 
w

• The coordinates are transformed to clip space are in the range -w to 
w (anything outside this range is clipped) 

• OpenGL requires NDC as the final vertex shader output, thus in clip 
space, perspective division is applied to the clip space coordinates:
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Perspective Projection

• Each component is divided by its w component

• A perspective projection matrix can be created in GLM as follows

• glm::perspective creates a large frustum that defines the visible space 
(outside clipped)
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glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH 
/ (float)SCR_HEIGHT, 0.01f, 100.0f);



Perspective Projection

• A perspective frustum can be visualized as 
a non-uniformly shaped box from where 
each coordinate inside this box will be 
mapped to a point in clip space
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Perspective Projection

• 1. parameter: fov (field of view) value and 
sets how large the viewspace is (usually set 
to 45°) 

• 2. parameter: aspect ratio (calculated by 
dividing the viewport’s width by its height)

• 3./4. parameter: near and far plane(usually 
0.1f and 100.0f) 

• All the vertices between the near and far 
plane and inside the frustum will be 
rendered
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glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH 
/ (float)SCR_HEIGHT, 0.01f, 100.0f);



Perspective Projection

Too high near values (like 10.0f) results in clipping coordinates close 
to the camera (between 0.0f and 10.0f) 

Gives a familiar visual result in videogames in that you can see 
through certain objects if you move too close to them
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Perspective Projection

• Let us go back to our example:
• We want translate, scale, and rotate the plane

• We want to translate the midpoint to the origin: translate by − ҧ𝑝

• Scale it by 5

• Rotate around the x-axis by -30°

• Translate it along the y-axis by 35 units
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Perspective
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Perspective

• Projection matrix (aspect=800/600=4/3, fov=45°, far=-near=12):
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Perspective

• We get:
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Perspective

• In clip space the coordinates are finally divided by w:
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Perspective Projection

• All together:
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glm::mat4 model= glm::mat4(1.0f); 
glm::mat4 view= glm::mat4(1.0f);
glm::mat4 projection = glm::mat4(1.0f);

model = glm::translate(model, glm::vec3(0.0f, -35.0f, 0.0f));
model = glm::rotate(model, glm::radians(-30.0f), glm::vec3(1.0, 0.0, 0.0));
model = glm::scale(model, glm::vec3(5.0));
model = glm::translate(model, glm::vec3(-7.5f, -7.5f, -10.0f));

glm::vec4 r1 = glm::vec4(1,0,0,0);
glm::vec4 r2 = glm::vec4(0, 0, 1, 0);
glm::vec4 r3 = glm::vec4(0, 1, 0, 0);
glm::vec4 r4 = glm::vec4(0, 0, 0, 1);
view = glm::mat4(r1, r2, r3, r4);

projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / 
(float)SCR_HEIGHT, -12.0f, 12.0f);



F5

• …done
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More 3D
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Introduction

• So far working with a 2D plane in 3D space

• Now extend it to a 3D cube 

• To render a cube, need a total of 36 vertices (6 faces * 
2 triangles * 3 vertices each)
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float vertices[] = {
-0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
-0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
-0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
-0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

-0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
-0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
-0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

-0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
-0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
-0.5f,  0.5f, -0.5f,  0.0f, 1.0f};



Introduction

• Now, we want to rotate the cube:

• And draw the cube using glDrawArrays, but this time with a count of 
36 vertices:
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model = glm::rotate(model, (float)glfwGetTime(), glm::vec3(0.5f, 1.0f, 0.0f));

glDrawArrays(GL_TRIANGLES, 0, 36);



F5

• A rotating cube
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Introduction

• Some sides of the cubes are being drawn over other sides

• This happens because when OpenGL draws the cube triangle-by-
triangle, it will overwrite its pixels even though something else 
might’ve been drawn there before 

• Because of this, some triangles are drawn on top of each other while 
they are not supposed to overlap
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Introduction

• Luckily, OpenGL stores depth information in a buffer called the z-
buffer that allows OpenGL to decide when to draw over a pixel and 
when not to 

• Using the z-buffer we can configure OpenGL to do depth-testing
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Z-Buffer

• GLFW automatically creates such a buffer

• The depth is stored within each fragment (z value) and whenever the 
fragment wants to output its color, OpenGL compares its depth values 
with the z-buffer and if the current fragment is behind the other 
fragment it is discarded, otherwise overwritten 

• This process is called depth testing and is done automatically by 
OpenGL
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Z-Buffer

• To make sure OpenGL actually performs the depth testing we need to 
enable it (disabled by default) by using glEnable

• glEnable and glDisable functions allow to enable/disable certain 
functionalities in OpenGL 

• That functionality is then enabled/disabled until another call is made 
to disable/enable it 

• To enable depth testing by enabling GL_DEPTH_TEST:
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glEnable(GL_DEPTH_TEST);



Z-Buffer

• By using a depth buffer, also want to clear the depth buffer before 
each render iteration (otherwise the depth information of the 
previous frame stays in the buffer) 

• Just like clearing the color buffer, clear the depth buffer by specifying 
the DEPTH_BUFFER_BIT bit in the glClear function:
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glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);



F5

• A rotating cube with 
correct depth
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More Cubes

• Let’s display 10 cubes on screen with 
different positions and rotations

• Only thing we have to change for each 
object is its model matrix

• First, define a translation vector for each 
cube that specifies its position in world 
space. 

• Define 10 cube positions in a glm::vec3 array
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glm::vec3 cubePositions[] = {
glm::vec3( 0.0f,  0.0f,  0.0f),
glm::vec3( 2.0f,  5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3( 2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f,  3.0f, -7.5f),
glm::vec3( 1.3f, -2.0f, -2.5f),
glm::vec3( 1.5f,  2.0f, -2.5f),
glm::vec3( 1.5f,  0.2f, -1.5f),
glm::vec3(-1.3f,  1.0f, -1.5f)

};



More Cubes

• Within the game loop call the glDrawArrays function 10 times, but 
each with a different model matrix
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glBindVertexArray(VAO);
for (unsigned int i = 0; i < 10; i++)
{
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * i;
model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
ourShader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
}



F5

• … so we are many now!
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Projections*

71



Introduction

• Prerequisite: Camera in origin, view along the (negative) z-axis

• Goal: 2D coordinates in the view plane

• Near and far defined along z-axis

• Orthographic: 
• The z-values are of no relevance

• Perspective: 
• The Pixel values result from the intercept theorem (later)
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Orthographic

• We have parallel rays from the point
on the view plane

• With a given point, what are the
NDC in the view plane?

• Again, the box is defined with left, 
right; bottom, top; near, far
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Orthographic

• Exemplarily, we have a closer look a the 𝑥-coordinate

• If the 𝑥 component is equal the left value, then it should become -1
• 𝑁𝐷𝐶𝑋 𝑙𝑒𝑓𝑡 = −1

• If the 𝑥 component is equal the right value, then it should become 1
• 𝑁𝐷𝐶𝑋 𝑟𝑖𝑔ℎ𝑡 = 1

• In between it should be linearized
• 𝑁𝐷𝐶𝑋 𝑥 = 𝑚𝑥 + 𝑛
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Orthographic
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𝑁𝐷𝐶𝑋 𝑙𝑒𝑓𝑡 = −1
𝑁𝐷𝐶𝑋 𝑟𝑖𝑔ℎ𝑡 = 1
𝑁𝐷𝐶𝑋 𝑥 = 𝑚𝑥 + 𝑛



Orthographic
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𝑁𝐷𝐶𝑋 𝑙𝑒𝑓𝑡 = −1
𝑁𝐷𝐶𝑋 𝑟𝑖𝑔ℎ𝑡 = 1
𝑁𝐷𝐶𝑋 𝑥 = 𝑚𝑥 + 𝑛



Orthographic
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Orthographic
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𝑁𝐷𝐶𝑍 −𝑛𝑒𝑎𝑟 = −1

𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 → [−𝑛𝑒𝑎𝑟, −𝑓𝑎𝑟]



Orthographic
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Perspective

• We have rays starting from one 
origin (camera)

• With a given point, what are the 
NDC in the view plane?

• Again, the box is defined with left, 
right; bottom, top; near, far
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Perspective
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Perspective

• Note, that we want the coordinates to be in NDC [-1,1] and that the 
values are divided by 𝑝𝑤 at the end
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Perspective
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Perspective

• Dividing the values by w is not possible with a matrix, thus, the 
projection matrix is of the form
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Perspective

• Dividing the values by w is not possible with a matrix, thus, the 
projection matrix is of the form
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Perspective
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𝑁𝐷𝐶𝑍 −𝑛 /𝑛 = −1
𝑁𝐷𝐶𝑍 −𝑓 /𝑓 = 1

𝑁𝐷𝐶𝑍 𝑧 = (𝐴𝑧 + 𝐵)/(−𝑧)



Perspective

• Finally:
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Perspective

• …but we knew another representation?
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Perspective

• View plane

89



Perspective
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Perspective

• 𝑝′𝑦 should be in the allowed interval 
[−1,1] so that’s ok

• 𝑝′𝑥 should be in the allowed interval 
[−𝑎𝑟, 𝑎𝑟], we divide it by 𝑎𝑟 then it is in 
[−1,1] so that’s ok
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Perspective

• This yields:
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Depth

• Non-linear relationship of 𝑧′ and 𝑧

• High values → little precision 
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Questions???
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