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Infroduction

e Last lecture: learned how to use matrices to transform vertices with

 Reminder: OpenGL expects visible vertices to be in normalized device
coordinates (NDC) after each vertex shader run (x,y,z € [—1,1])

e Usually the coordinates are in a given range and in the vertex shader
these coordinates are transformed to NDC

* NDC coordinates are then given to the rasterizer to transform them to
2D coordinates/pixels on the screen



Infroduction

* Transforming coordinates to NDC and then to screen coordinates is
usually accomplished in a step-by-step fashion where object’s vertices
transformed to several coordinate systems

* The advantage: some operations/calculations are easier in certain
coordinate systems



Infroduction

* There are a total of 5 different coordinate systems that are of
Importance:
 Local space (or Object space)
World space
View space (or Eye space)
Clip space
Screen space



Spaces



Global Picture

* Transformation of the coordinates from one space to the next coordinate
space involves several transformation matrices

* Most important matrices are:
* model
* view
* projection
* Vertex coordinates (order of coordinates):
Local space (local coordinates),
World coordinates
View coordinates,

clip coordinates
(eventually) end up as screen coordinates



Global Picture

e Overview

1. Local Space 2. World Space

3. View Space

4. Clip Space




Global Picture

e Local coordinates are the coordinates of the
object relative to its local origin

* E.g., the positions of vertices of your 3D scan

1. Local Space



Global Picture

* Next step is to transform the local coordinates to
world-space coordinates (model matrix)

* If we have several objects, they life initially in their
own coordinate system

* The model transformation puts them in a global
space (world space)

/

2. World Space



Global Picture

* Next, transform the world coordinates to view-
space coordinates (view matrix) in such a way that
each coordinate is as seen from the camera or
viewer’s point of view (in direction of the negative

Z axis)

i

3. View Space
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Global Picture

* From view space, we project them to clip
coordinates (projection matrix)

* Clip coordinates are processed to the -1.0 and 1.0
range and determine which vertices will end up
on the screen

.

4. Clip Space
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Global Picture

* Lastly, transformation of the clip coordinates to
screen coordinates (viewport transform) that
transforms the coordinates from -1.0 and 1.0 to
the coordinate range defined by glViewport

* The resulting coordinates are then sent to the
rasterizer to turn them into fragments

A

B

5. Screen Space
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Global Picture

e Reason for transforming the vertices into all these different spaces is
that some operations make more sense or are easier to use in certain
coordinate systems

* E.g., modifying an object makes most sense to do this in local space

* E.g., calculating operations on the object with respect to the position
of other objects makes most sense in world coordinates

* Could define one transformation matrix that goes from local space to
clip space all in one go, but that leaves us with less flexibility



Local Space

. II;)oc:;nl )space is the coordinate space that is local to the object (where object
egin

e E.g., a modelled cube from a software package (like Blender)

 Origin of cube is probably at (0,0,0) even though the cube might end up at
a different location in the final application

* Probably all the models you've created all have (0,0,0) as their initial
position

* All the vertices of your model are therefore in local space = they are all
local to the object

* The vertices of the wall we defined in the last lectures were specified as
coordinates between -0.5 and 0.5 with 0.0 as its origin = these are local
coordinates



World Space

* Import all objects directly would probably result all being stacked =
want to define individual positions for each object inside a larger
world

* World space coordinates are coordinates of all vertices relative to a
world

* Coordinates of the objects are transformed from local to world space
with the model matrix.



World Space

World Space

 Model matrix is a transformation matrix that translates, scales and/or
rotates

 E.g., transforming a house by scaling it down (it was a bit too large in
local space), translating it to a suburbia town and rotating it a bit to
the left on the y-axis

e Similar to the transformations of last lecture



N
View Space \

L.
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3. View Space

 View space is usually referred to as the camera of OpenGL (alias
camera space/eye space)

* VView space is the result of transforming world-space coordinates to
coordinates that are seen from the camera’s point of view

* Accomplished with a combination of translations and rotations that
certain items are in front of the camera (view matrix)



Clip Space 3

4. Clip Space

* At the end of each vertex shader run, OpenGL expects NDC any
coordinate outside this range is clipped (clipped cordinates are
discarded)

* Remaining coordinates will end up as visible fragments

* Projection matrix transforms vertex coordinates from view to clip-
space, it specifies a range of coordinates e.g. -1000 and 1000 in each
dimension and it transforms them to the NDC

e With this example a coordinate of (1250, 500, 750) would not be
visible (x outside)



.

Clip Space 3

4. Clip Space

 Specifying a range of coordinates in each dimension results in a
viewing box

* This is called a frustum and each coordinate that ends up inside it will
end up on the screen

* Converting coordinates within a specified range to NDC is called
projection (projects 3D coordinates to 2D NDC)



Clip Space

4. Clip Space

If only a part of a primitive, e.g., a triangle is outside the clipping
volume OpenGL will reconstruct the triangle as one or more triangles
to fit inside the clipping range

20
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Clip Space 3

4. Clip Space

» After the vertices are transformed to clip space a final operation called
perspective division is performed (division of x-, y-, z-components of the
position vectors by the vector’s homogeneous w component)

* |t transforms the 4D clip space coordinates to 3D NDCs (automatically
performed at the end of each vertex shader run)

* |t is after this stage where the resulting coordinates are mapped to screen
coordinates (using the settings of glViewport) and turned into fragments

* The projection matrix can take two different forms:
e orthographic projection matrix
* perspective projection matrix



Projection Matrix



Orthographic Projection

* An orthographic projection matrix defines a cube-like frustum box
that defines the clipping space where each vertex outside this box is
clipped

* Orthographic projection matrix needs the width, height and length of
the visible frustum

* All the coordinates that end up inside this frustum after transforming
them to clip space with the orthographic projection matrix won’t be
clipped

* The frustum looks a bit like a container



Orthographic Projection

* Frustum defines visible coordinates
(width, height, near, far plane)

e Coordinates outside are
clipped/discarded

* The orthographic frustum maps
coordinates inside the frustum to NDC
(w component = 1 - perspective
division doesn’t change the
coordinates) /

>

Discarded




Orthographic Projection

* To create an orthographic projection matrix, use GLM’s built-in
function glm::ortho:
glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);

» 1./2. parameters: specify the left and right coordinate of the frustum
 3./4. parameters: specify the bottom and top part of the frustum

 5./6. parameters: define the distances between the near and far
plane

* This projection matrix transforms all coordinates between these x, y
and z range values to NDCs



Orthographic Projection

* An orthographic projection matrix directly maps coordinates to the
2D plane (screen), but in reality, a direct projection produces
unrealistic results since the projection doesn’t take perspective into
account

* That is something the perspective projection matrix fixes for us



Spaces

* Example: Given are four points that yield a plane

5) 10 5) 10
P1 — O |, p2= O |,p3=1101],ps =110
10 10 10 10

* The camera is positioned on the y-axis looking to the origin



Spaces

P2

P1

P3

y2

)|

10
10

)|
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5) 10 5)
pr=|9|,p2=1|92 |,p3=10],ps=
Spaces (o) = () == () -

* We want translate, scale, and rotate the plane

* We want to translate the midpoint to the origin: translate by —p
e Scaleitby 5

* Rotate around the x-axis by -30°



5 10 5 10
pr=1| D ),p2=195]|,p3=1|10],ps =110
S paces (10) (10) (10) (10

* We want translate, scale, and rotate the plane

* We want to translate the midpoint to the origin: translate by —p
e Scaleitby 5

* Rotate around the x-axis by -30°

0 0 o\ /5 0 0 0\ /1 0

rotate - scale - trans = cos(—30°) —sin(—30°) O 0O 5 0 O 0 1
sin(—30°)  cos(—30°) 0|0 0 5 0]]0 O

0 0 1/ \o 0 0 1/ \0o 0

0 0 —37.5
4.33 2.5 —=57.48
—2.5 4.33 —24.55

0 0 1

Q

OO OO OO O

o = O O

—7.5
—7.5
—10



Spaces

* Note: translation*rotation*scale (this is what you read in other
tutorials probably)

* That works, if the model is placed properly and you want to translate
it afterwards



5 10 5 10
pr=1| D ),p2=195]|,p3=1|10],ps =110
S paces (10) (10) (10) (10

* We get: mp; = model - p; = rotate - scale - trans - p;

—12.5 12.5 —12.5
mp1 ~ | —10.83 | , mpas = | —10.83 | , mpz = | 10.83 | , mpy =
6.25 6.25 —6.25

* Note: for multiplication with a 4x4 matrix, we add a 1 to the last
component and omit it here for the 3D vector

12.5
10.83
—06.25



—12.5 12.5 —12.5 12.5
mp1 ~ | —10.83 | , mpo =~ | —10.83 | , mps =~ | 10.83 | , mpg =~ | 10.83
6.25 6.25 —6.25 —6.25

Spaces

AZ

mp3
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—12.5 12.5 —12.5 12.5
mp; ~ | —10.83 | , mpo =~ | —10.83 | , mps = | 10.83 | , mpgy = | 10.83
6.25 6.25 —6.25 —6.25

Spaces
* The camera is positioned on the y-axis
Az
/(1 0 0 0
. 100 1 O ,
view = | o 1 5 ) 7
\0 0 0 1) i



—12.5 12.5 —12.5 12.5
mp; ~ | —10.83 | , mpo =~ | —10.83 | , mps = | 10.83 | , mpgy = | 10.83
6.25 6.25 —6.25 —6.25

* We get: vmp; = view - mp;

Spaces

—12.5 12.5 —12.5 12.5
vmpy ~ 6.25 , VMpo ~ 6.25 ,omps ~ | —6.25 | , vmps =~ | —6.25
—10.83 —10.83 10.83 10.83



—12.5 12.5 —12.5 12.5
vmpy =~ 6.25 , VMpo ~ 6.25 ,ompg =~ | —6.25 | , vmpyg = | —6.25
S p O C es —10.83 —10.83 10.83 10.83

e -15, 15: left and right coordinate
of the frustum

* -10,10: bottom and top part of
the frustum

e -12,12: distances between the
near and far plane :
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—12.5 12.5 —12.5 12.5
vmpy =~ 6.25 , UMpo = 6.25 ,ompg =~ | —6.25 | , vmpyg = | —6.25
S p C] C eS —10.83 —10.83 10.83 10.83

* Projection matrix

( 2 0 0 __right+left o
right =left 2 Qﬁfi&l&’iﬁ
ro] = 0 top—bottom 0 T ton—bottom
prog 0 0 —2 __Jfar+near
far—near far—near
\ 0 0 0 1)
( 1/15 0 0 0\
| o 1/10 0 0
“l o 0 -1/12 0
\ o0 0o 0 1
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~12.5 12.5 ~12.5 12.5

vmpy =~ 6.25 , UMpy ~ 6.25 ,ompg ~ | —6.25 | , vmpyg =~ | —6.25

S p qces —10.83 —10.83 10.83 10.83
e We get: puvmp; ‘= proj - vmp;

—0.83 0.83 —0.83 0.83
pvmpy ~ | 0.63 |, pvmps =~ | 0.63 |, pvmps =~ | —0.63 | , pvmpg = | —0.63
0.90 0.90 —0.90 —0.90



Spaces

 All together:

float vertices[] =

// positions

5.f, 5.f, l10.0f,
5.f, 10.f, 10.0f,
l10.f, 10.f, 10.0f,
l10.f, 5.f, 10.0f,

¥

{

// texture coords
1.0f, 1.0f, // top right
1.0f, 0.0f, // bottom right
0.0f, 0.0f, // bottom left
0.0f, 1.0f // top left
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Spaces

 All together:

:mat4d model =
:matd view= glm:
:matd projection

glm:
glm:
glm:

model
model
model

glm:
glm:
glm:
glm:
view

projection

:vecd
:vecd
:vecd
:vecd
= glm:

glm:
glm:
glm:

rl
r2
r3
r4

glm: :ortho(-15.0f, 15.0f,

:rotate(model, glm:
:scale(model, glm::vec3(5.0));
:translate(model, glm::vec3(-7.5F,

glm:
glm:
glm:
glm:

glm::matd4(1.0f);

:matd(1.0f);
= glm::mat4(1.0f);

:vec4(1,0,0,0);
:vec4(0, 0, 1, 0);
:vecd4(o, 1, 0, 9);
:vec4(o, 0, 0, 1);
:mat4(rl, r2, r3, rd);

:radians(-30.0f), glm:

-7.5F,

-10.0f, 10.0f,

:vec3(1.0, 0.0, 0.0));

-10.0f));

-12.0f, 12.0f);
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Spaces

 All together:

glGetUniformLocation(ourShader.ID, "model");
glGetUniformLocation(ourShader.ID, "view");
glGetUniformLocation(ourShader.ID, "projection");

unsigned int modelloc
unsigned int viewloc
unsigned int projlLoc

glUniformMatrix4fv(modellLoc, 1, GL FALSE, &model[0][0]);
glUniformMatrix4fv(viewLoc, 1, GL FALSE, &view[0][0]);
glUniformMatrix4fv(projLoc, 1, GL FALSE, &projection[0][0]);
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Spaces

 All together:

#version 330 core

layout (location = @) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()

{
gl Position = projection * view * model * vec4(aPos, 1.0);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);



e ...finally done
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Perspective Projection

* In real life objects that are farther
away appear much smaller

* This weird effect is called
perspective

* Perspective is especially
noticeable when looking down the
road

44



Perspective Projection

* Due to perspective the lines seem to coincide the farther they are
away

* This is the effect the perspective projection matrix tries to mimic

* Maps a frustum range to clip space and manipulates the w value of
each vertex coordinate



Perspective Projection

* The further away a vertex coordinate is from the viewer, the higher is
W

* The coordinates are transformed to clip space are in the range -w to
w (anything outside this range is clipped)

* OpenGL requires NDC as the final vertex shader output, thus in clip
space, perspective division is applied to the clip space coordinates:

x/w
out = | y/w
z/w



x/w
out = | y/w
z/w

Perspective Projection

* Each component is divided by its w component
* A perspective projection matrix can be created in GLM as follows

glm: :mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH
/ (float)SCR _HEIGHT, ©.01f, 100.0f);

* glm::perspective creates a large frustum that defines the visible space
(outside clipped)



Perspective Projection

* A perspective frustum can be visualized as
a non-uniformly shaped box from where
each coordinate inside this box will be
mapped to a point in clip space




Perspective Projection

Far P/ane

e 1. parameter: fov (field of view) value and
sets how large the viewspace is (usually set
to 45°)

e 2. parameter: aspect ratio (calculated by
dividing the viewport’s width by its height)

Discarded

 3./4. parameter: near and far plane(usually
0.1f and 100.0f)

e All the vertices between the near and far
plane and inside the frustum will be
rendered

glm: :mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH
/ (float)SCR HEIGHT, ©.01f, 100.0f);



Perspective Projection

Too high near values (like 10.0f) results in clipping coordinates close
to the camera (between 0.0f and 10.0f)

Gives a familiar visual result in videogames in that you can see
through certain objects if you move too close to them

50



Perspective Projection

* Let us go back to our example:
 We want translate, scale, and rotate the plane
We want to translate the midpoint to the origin: translate by —p
Scale it by 5
Rotate around the x-axis by -30°
Translate it along the y-axis by 35 units

D 10 9 10

10 10 10 10



Perspective

vmpy ~

(—12.5 12.5 —12.5 12.5
6.25 |, vmpy = 6.25 ,vmpg ~ | —6.25 |, vmpg = | —6.25

—15.83)

\—45.83)

\—24.17)

\—24.17

)
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—12.5 12.5 —12.5 12.5
. vmp; ~ 6.25 , UMpo ~ 6.25 ,omps ~ | —6.25 |, vmps = | —6.25
Perspec-l-lve —45.83 —45.83 —24.17 —24.17

* Projection matrix (aspect=800/600=4/3, fov=45°, far=-near=12):

1
/aspect-tan(fov/Q) (1) 0 0 \
- 0 0 0
pro) = tan(fov/2) fartnear > farmear
0 0 ~ far—near far—near
\ 0 0 —1 0 }
1
(e ) 0D
= 0 V2-1 00

0 0
\ 0 0 -1 0




Perspective (

* We get:
—22.63
15.09
pvmp; = 19

, pPUmp2 ~

—12.5
6.25

pump; ‘= proj - vmp;

/22.63\
15.09
12

\45.82 /

12.5
, UMpo ~ 6.25
—45.83

—12.5 12.5
,omps ~ | —6.25 |, vmps = | —6.25
—24.17 —24.17




—22.63 22.63 —22.63 22.63
15.09 15.09 —15.09 —15.09
. pvmpy ~ 19 y pumpa ~ 19 , pumps ~ 192 , pumpy ~ 192
P ersS p e C'|'|\/e 45.82 45.82 24.17 24.17
* In clip space the coordinates are finally divided by w:

—0.49 0.49 —0.94 0.94
outp1 ~ | 0.33 |, outps = | 0.33 | , outps = | —0.62 | , outpy =~ | —0.62
0.26 0.26 0.50 0.50



Perspective Projection

 All together:

glm: :mat4 model= glm::mat4(1l.0f);
glm::mat4 view= glm::mat4(l.0f);
glm::mat4 projection = glm::mat4(1.0f);

model = glm::translate(model, glm::vec3(0.0f, -35.0f, 0.0f));

model = glm::rotate(model, glm::radians(-30.0f), glm::vec3(1.0, 0.0, 0.0));
model = glm::scale(model, glm::vec3(5.0));

model = glm::translate(model, glm::vec3(-7.5f, -7.5f, -10.0f));

glm::vec4 rl = glm::vec4(1,0,0,0);
glm::vecd r2 = glm::vec4(0, 0, 1, 0);
glm::vec4 r3 = glm::vec4(0, 1, 0, 0);
glm::vecd r4 = glm::vecd4(0, 0, 0, 1);
view = glm::mat4(rl, r2, r3, rd);

projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH /
(float)SCR_HEIGHT, -12.0f, 12.0f);
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More 3D



Infroduction

* So far working with a 2D plane in 3D space
* Now extend it to a 3D cube

* To render a cube, need a total of 36 vertices (6 faces *
2 triangles * 3 vertices each)

float vertices[]

-0.
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Q.
Q.
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Infroduction

* Now, we want to rotate the cube:

model = glm::rotate(model, (float)glfwGetTime(), glm::vec3(0.5f, 1.0f, 0.0f));

* And draw the cube using glDrawArrays, but this time with a count of
36 vertices:

glDrawArrays(GL_TRIANGLES, 0, 36);



* A rotating cube
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Infroduction

* Some sides of the cubes are being drawn over other sides

* This happens because when OpenGL draws the cube triangle-by-
triangle, it will overwrite its pixels even though something else

might’ve been drawn there before

* Because of this, some triangles are drawn on top of each other while
they are not supposed to overlap



Infroduction

* Luckily, OpenGL stores depth information in a buffer called the z-
buffer that allows OpenGL to decide when to draw over a pixel and
when not to

e Using the z-buffer we can configure OpenGL to do depth-testing



/-Buffer

 GLFW automatically creates such a buffer

* The depth is stored within each fragment (z value) and whenever the
fragment wants to output its color, OpenGL compares its depth values
with the z-buffer and if the current fragment is behind the other
fragment it is discarded, otherwise overwritten

* This process is called depth testing and is done automatically by
OpenGL



/-Buffer

* To make sure OpenGL actually performs the depth testing we need to
enable it (disabled by default) by using glEnable

 glEnable and glDisable functions allow to enable/disable certain
functionalities in OpenGL

* That functionality is then enabled/disabled until another call is made
to disable/enable it

* To enable depth testing by enabling GL_ DEPTH_TEST:

glEnable(GL_DEPTH TEST);



/-Buffer

* By using a depth buffer, also want to clear the depth buffer before
each render iteration (otherwise the depth information of the
previous frame stays in the buffer)

* Just like clearing the color buffer, clear the depth buffer by specifying
the DEPTH_BUFFER_BIT bit in the glClear function:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);



FS

* A rotating cube with
correct depth
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More Cubes

* Let’s display 10 cubes on screen with T mierest o 0t o.0f, 0.6F),
different positions and rotations e veca (e oo )

* Only thing we have to change for each = gt Sy el
object is its model matrix e iveca( 15 et alee

 First, define a translation vector for each ﬁii:ﬁiié 12?? éﬁgiﬁ Iij?iij
cube that specifies its position in world y OHEERTR B S
space.

e Define 10 cube positions in a glm::vec3 array



More Cubes

* Within the game loop call the gIDrawArrays function 10 times, but
each with a different model matrix

glBindVertexArray(VAO);

for (unsigned int i = 0; 1 < 10; i++)

{

glm::mat4 model = glm::matd4(l.0f);

model = glm::translate(model, cubePositions[i]);

float angle = 20.0f * i;

model = glm::rotate(model, glm::radians(angle), glm::vec3(l.0f, 0.3f, 0.5));
ourShader.setMat4("model", model);

glDrawArrays(GL_TRIANGLES, 0, 36);

}



®*..SOweadre many now!
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Projections*



Infroduction

* Prerequisite: Camera in origin, view along the (negative) z-axis
e Goal: 2D coordinates in the view plane
* Near and far defined along z-axis
* Orthographic:
* The z-values are of no relevance

* Perspective:
e The Pixel values result from the intercept theorem (later)



Orthographic

* We have parallel rays from the point
on the view plane

* With a given point, what are the
NDC in the view plane?

e Again, the box is defined with left,
right; bottom, top; near, far

¢

¢




Orthographic -

* Exemplarily, we have a closer look a the x-coordinate

* If the x component is equal the left value, then it should become -1
¢ NDCX(left) — _1
* If the x component is equal the right value, then it should become 1

* In between it should be linearized
e NDCy(x) =mx+n

O



NDCx(right) =1

Orthographic NDCx(x) = mx +
1 —(=1)
 right — left
B 2
 right — left
2-left
ND left) = —1 = —1—
Cx(left) - right — left
—right + left — 2 - left
= n = ,
right — left
—right — left
L rig ef

right — left
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Orthographic

NDCX(ZC) —

2

right — leftaj

NDCx(right) =1
NDCy(x) =mx +n

- right + left
right — left




Orthographic
2 right + left
NDC = —
x (@) right — leftx right — left
2 top + bottom
ND = —
Cy (@) top — bottomm top — bottom
—2
NDCy(z) = , far 4+ near

~ far — near B far — near
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Orthographic

NDCy (x) = — 2 x_m.ght+left
right — left right — left
2
NDCy (x) = . top + bottom
top — bottom top — bottom
—2
NDCy(z) = , far 4+ near

~ far — near B far — near

NDC,(—near) = —1

[Zminr Zmax] — [—near,—far]
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Orthographic

proj =

/

2

right—left

0
0
0

0
2

top—bottom

0
0

2 right + left
NDC = —
x(@) right — leftx right — left

B 2 top + bottom
NDCy (z) = top — bottomx top — bottom
—2 far + near
ND = —
Cz(w) far — nearx far — near
0 __right+tleft \
right—left
__top+bottom
top—bottom
—2 . f%fr%—nea,fr
far—near far—near

0 1)
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Perspective

* We have rays starting from one
origin (camera)

* With a given point, what are the
NDC in the view plane?

e Again, the box is defined with left,
right; bottom, top; near, far




Perspective

J\N Plane
|

Pl

Dy

Py _ Py
— Pz n
py=mn- -
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Perspective o .

—Pz

* Note, that we want the coordinates to be in NDC [-1,1] and that the
values are divided by p,,, at the end

NDCy (x) 2 top + bottom
x) = x —
Y top — bottom top — bottom
2 n-p, top+ bottom

NDCy(—n - = -
Y( Dy /pz) top — bottom  —p, top — bottom

1 2-n-p, . p.-(top+ bottom)
—p, \ top — bottom | top — bottom




Perspective

NDCx (pz,pz) =

NDCY(pyapz) —

1 2:n-py | Pz (right +left)
—D2 (fr’ight —left right — left )

1 2:n-py, Dz (top+ bottom)
—D» (top — bottom top — bottom

)
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NDCx (pz,ps) = . :
X (Pz, p2) —D, (mght — left + right — left

Perspective (gl o)

NDCy (py,p-) = -

top — bottom top — bottom

* Dividing the values by w is not possible with a matrix, thus, the
projection matrix is of the form

2n 0 right+left 0
(Tight—left right—left \
0 2n __top+bottom 0
pfroj — top—bottom top—bottom
0 0 ? 7

\ 0 0 —1 0/



NDCx (pz,ps) = . :
X (Pz, p2) —D, (mght — left + right — left

Perspective (gl o)

NDCy (py,p-) = -

top — bottom top — bottom

* Dividing the values by w is not possible with a matrix, thus, the
projection matrix is of the form

2n 0 right+left 0
/fright—left fr'zlghtgleft \
2n __top+tbottom
pfroj — 0 top—bottom top—bottom 0
0 0 A B

\ 0 0 1 0/



NDC,(—n)/n = —1
NDC,(—f)/f =1

Perspec-l-ive NDC,(z) = (Az+ B)/(—z)
NDCy(—n) = —AntB_
n
NDCz(—f) = _A°}C+B =1
= —-Antn=-A-f—f
:>A:—f+n
f—n

2-f-n




Perspective

* Finally:

proj =

(

2n

right—left

0

0
0

0
2n

right+left

top—bottom

0
0

right—left
top+bottom

~ top—bottom

_fHn
f—n
—1

-

N
k.HO
N

ojﬁ-
3

N~ d




2n 0 right+left
right—left

right—left
o 0 2n
Perspective T

__top+bottom
top—bottom top—bottom
0 0 _ftn
f—n
\ 0 0 ~1

e ...but we knew another representation?

1
/aspect-tan(fov/Q) (1) 0 0 \
0 0 0
roj) = tan(fov/2)
o : 0" fortaeer 3o
\ 0 0 1

o)




Perspective

* View plane 1
width 5 ta
ar = -ar r
height
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Perspective

tan(a/2) = © = !
an (o = — n =
n tan(a/2)
py _ Py
—Pz T
/ Py
py = —Nn- ZJ_Z

View Plane

py \
!
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Perspective

* p'y should be in the allowed interval
View Plane

|—1,1] so that’s ok y
* p',. should be in the allowed interval ” \

|—ar, ar], we divide it by ar thenitisin
|—1,1] so that’s ok

p/ _ 1 _ Dy

Y —p, tan(a/2)
;. 1 Px
paj T )

—p, ar-tan(a/2)



Perspective

* This yields:

proj =

1
/ aspect-tan(fov/2)
0

0

\ 0

0
0

__ far+near

far—near

—1

0
0

__2-far-near

far—near

0

)

/

Dz

—Pz

ar - tan(a/2)
Py

—Pz

| tan(a/2)



Depth

proj =

* Non-linear relationship of z' and z

* High values = little precision

proj -

&

Y

1)

2fn

1

z2(f —n)

aspect-tan(fov/2)

0

0
0

Y

0 0
1 0
tan(fov/2)

0 . far+near

far—near

0 —1

1

0
0

__2-far-near
far—near

0
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