
Computer Graphics
- Coordinate Systems

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• Last lecture: learned how to use matrices to transform vertices with

• Reminder: OpenGL expects visible vertices to be in normalized device
coordinates (NDC) after each vertex shader run (𝑥, 𝑦, 𝑧 ∈ [−1,1])

• Usually the coordinates are in a given range and in the vertex shader
these coordinates are transformed to NDC

• NDC coordinates are then given to the rasterizer to transform them to
2D coordinates/pixels on the screen

2

Introduction

• Transforming coordinates to NDC and then to screen coordinates is
usually accomplished in a step-by-step fashion where object’s vertices
transformed to several coordinate systems

• The advantage: some operations/calculations are easier in certain
coordinate systems

3

Introduction

• There are a total of 5 different coordinate systems that are of
importance:
• Local space (or Object space)

• World space

• View space (or Eye space)

• Clip space

• Screen space

4

Spaces

5

Global Picture
• Transformation of the coordinates from one space to the next coordinate

space involves several transformation matrices

• Most important matrices are:
• model
• view
• projection

• Vertex coordinates (order of coordinates):
• Local space (local coordinates),
• World coordinates
• View coordinates,
• clip coordinates
• (eventually) end up as screen coordinates

6

Global Picture

• Overview

7

Global Picture

• Local coordinates are the coordinates of the
object relative to its local origin

• E.g., the positions of vertices of your 3D scan

8

Global Picture

• Next step is to transform the local coordinates to
world-space coordinates (model matrix)

• If we have several objects, they life initially in their
own coordinate system

• The model transformation puts them in a global
space (world space)

9

Global Picture

• Next, transform the world coordinates to view-
space coordinates (view matrix) in such a way that
each coordinate is as seen from the camera or
viewer’s point of view (in direction of the negative
𝑧 axis)

10

Global Picture

• From view space, we project them to clip
coordinates (projection matrix)

• Clip coordinates are processed to the -1.0 and 1.0
range and determine which vertices will end up
on the screen

11

Global Picture

• Lastly, transformation of the clip coordinates to
screen coordinates (viewport transform) that
transforms the coordinates from -1.0 and 1.0 to
the coordinate range defined by glViewport

• The resulting coordinates are then sent to the
rasterizer to turn them into fragments

12

Global Picture

• Reason for transforming the vertices into all these different spaces is
that some operations make more sense or are easier to use in certain
coordinate systems

• E.g., modifying an object makes most sense to do this in local space

• E.g., calculating operations on the object with respect to the position
of other objects makes most sense in world coordinates

• Could define one transformation matrix that goes from local space to
clip space all in one go, but that leaves us with less flexibility

13

Local Space
• Local space is the coordinate space that is local to the object (where object

begin)
• E.g., a modelled cube from a software package (like Blender)
• Origin of cube is probably at (0,0,0) even though the cube might end up at

a different location in the final application
• Probably all the models you’ve created all have (0,0,0) as their initial

position
• All the vertices of your model are therefore in local space → they are all

local to the object
• The vertices of the wall we defined in the last lectures were specified as

coordinates between -0.5 and 0.5 with 0.0 as its origin → these are local
coordinates

14

World Space

• Import all objects directly would probably result all being stacked →
want to define individual positions for each object inside a larger
world

• World space coordinates are coordinates of all vertices relative to a
world

• Coordinates of the objects are transformed from local to world space
with the model matrix.

15

World Space

• Model matrix is a transformation matrix that translates, scales and/or
rotates

• E.g., transforming a house by scaling it down (it was a bit too large in
local space), translating it to a suburbia town and rotating it a bit to
the left on the y-axis

• Similar to the transformations of last lecture

16

View Space

• View space is usually referred to as the camera of OpenGL (alias
camera space/eye space)

• View space is the result of transforming world-space coordinates to
coordinates that are seen from the camera’s point of view

• Accomplished with a combination of translations and rotations that
certain items are in front of the camera (view matrix)

17

Clip Space

• At the end of each vertex shader run, OpenGL expects NDC any
coordinate outside this range is clipped (clipped cordinates are
discarded)

• Remaining coordinates will end up as visible fragments

• Projection matrix transforms vertex coordinates from view to clip-
space, it specifies a range of coordinates e.g. -1000 and 1000 in each
dimension and it transforms them to the NDC

• With this example a coordinate of (1250, 500, 750) would not be
visible (x outside)

18

Clip Space

• Specifying a range of coordinates in each dimension results in a
viewing box

• This is called a frustum and each coordinate that ends up inside it will
end up on the screen

• Converting coordinates within a specified range to NDC is called
projection (projects 3D coordinates to 2D NDC)

19

Clip Space

If only a part of a primitive, e.g., a triangle is outside the clipping
volume OpenGL will reconstruct the triangle as one or more triangles

to fit inside the clipping range

20

Clip Space

• After the vertices are transformed to clip space a final operation called
perspective division is performed (division of x-, y-, z-components of the
position vectors by the vector’s homogeneous w component)

• It transforms the 4D clip space coordinates to 3D NDCs (automatically
performed at the end of each vertex shader run)

• It is after this stage where the resulting coordinates are mapped to screen
coordinates (using the settings of glViewport) and turned into fragments

• The projection matrix can take two different forms:
• orthographic projection matrix

• perspective projection matrix

21

Projection Matrix

22

Orthographic Projection

• An orthographic projection matrix defines a cube-like frustum box
that defines the clipping space where each vertex outside this box is
clipped

• Orthographic projection matrix needs the width, height and length of
the visible frustum

• All the coordinates that end up inside this frustum after transforming
them to clip space with the orthographic projection matrix won’t be
clipped

• The frustum looks a bit like a container

23

Orthographic Projection

• Frustum defines visible coordinates
(width, height, near, far plane)

• Coordinates outside are
clipped/discarded

• The orthographic frustum maps
coordinates inside the frustum to NDC
(w component = 1 → perspective
division doesn’t change the
coordinates)

24

Orthographic Projection

• To create an orthographic projection matrix, use GLM’s built-in
function glm::ortho:

• 1./2. parameters: specify the left and right coordinate of the frustum

• 3./4. parameters: specify the bottom and top part of the frustum

• 5./6. parameters: define the distances between the near and far
plane

• This projection matrix transforms all coordinates between these x, y
and z range values to NDCs

25

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);

Orthographic Projection

• An orthographic projection matrix directly maps coordinates to the
2D plane (screen), but in reality, a direct projection produces
unrealistic results since the projection doesn’t take perspective into
account

• That is something the perspective projection matrix fixes for us

26

Spaces

• Example: Given are four points that yield a plane

• The camera is positioned on the y-axis looking to the origin

27

Spaces

28

Spaces

• We want translate, scale, and rotate the plane

• We want to translate the midpoint to the origin: translate by − ҧ𝑝

• Scale it by 5

• Rotate around the x-axis by -30°

29

Spaces

• We want translate, scale, and rotate the plane

• We want to translate the midpoint to the origin: translate by − ҧ𝑝

• Scale it by 5

• Rotate around the x-axis by -30°

30

Spaces

• Note: translation*rotation*scale (this is what you read in other
tutorials probably)

• That works, if the model is placed properly and you want to translate
it afterwards

31

Spaces

• We get:

• Note: for multiplication with a 4x4 matrix, we add a 1 to the last
component and omit it here for the 3D vector

32

Spaces

33

Spaces

• The camera is positioned on the y-axis

34

Spaces

• We get:

35

Spaces

• -15, 15: left and right coordinate
of the frustum

• -10,10: bottom and top part of
the frustum

• -12,12: distances between the
near and far plane

36

Spaces

• Projection matrix

37

Spaces

• We get:

38

Spaces

• All together:

39

float vertices[] = {
// positions // texture coords
5.f, 5.f, 10.0f, 1.0f, 1.0f, // top right
5.f, 10.f, 10.0f, 1.0f, 0.0f, // bottom right
10.f, 10.f, 10.0f, 0.0f, 0.0f, // bottom left
10.f, 5.f, 10.0f, 0.0f, 1.0f // top left
};

Spaces

• All together:

40

glm::mat4 model = glm::mat4(1.0f);
glm::mat4 view= glm::mat4(1.0f);
glm::mat4 projection = glm::mat4(1.0f);

model = glm::rotate(model, glm::radians(-30.0f), glm::vec3(1.0, 0.0, 0.0));
model = glm::scale(model, glm::vec3(5.0));
model = glm::translate(model, glm::vec3(-7.5f, -7.5f, -10.0f));

glm::vec4 r1 = glm::vec4(1,0,0,0);
glm::vec4 r2 = glm::vec4(0, 0, 1, 0);
glm::vec4 r3 = glm::vec4(0, 1, 0, 0);
glm::vec4 r4 = glm::vec4(0, 0, 0, 1);
view = glm::mat4(r1, r2, r3, r4);

projection = glm::ortho(-15.0f, 15.0f, -10.0f, 10.0f, -12.0f, 12.0f);

Spaces

• All together:

41

unsigned int modelLoc = glGetUniformLocation(ourShader.ID, "model");
unsigned int viewLoc = glGetUniformLocation(ourShader.ID, "view");
unsigned int projLoc = glGetUniformLocation(ourShader.ID, "projection");

glUniformMatrix4fv(modelLoc, 1, GL_FALSE, &model[0][0]);
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, &view[0][0]);
glUniformMatrix4fv(projLoc, 1, GL_FALSE, &projection[0][0]);

Spaces

• All together:

42

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{

gl_Position = projection * view * model * vec4(aPos, 1.0);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);

}

F5…

• …finally done

43

Perspective Projection

• In real life objects that are farther
away appear much smaller

• This weird effect is called
perspective

• Perspective is especially
noticeable when looking down the
road

44

Perspective Projection

• Due to perspective the lines seem to coincide the farther they are
away

• This is the effect the perspective projection matrix tries to mimic

• Maps a frustum range to clip space and manipulates the w value of
each vertex coordinate

45

Perspective Projection

• The further away a vertex coordinate is from the viewer, the higher is
w

• The coordinates are transformed to clip space are in the range -w to
w (anything outside this range is clipped)

• OpenGL requires NDC as the final vertex shader output, thus in clip
space, perspective division is applied to the clip space coordinates:

46

Perspective Projection

• Each component is divided by its w component

• A perspective projection matrix can be created in GLM as follows

• glm::perspective creates a large frustum that defines the visible space
(outside clipped)

47

glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH
/ (float)SCR_HEIGHT, 0.01f, 100.0f);

Perspective Projection

• A perspective frustum can be visualized as
a non-uniformly shaped box from where
each coordinate inside this box will be
mapped to a point in clip space

48

Perspective Projection

• 1. parameter: fov (field of view) value and
sets how large the viewspace is (usually set
to 45°)

• 2. parameter: aspect ratio (calculated by
dividing the viewport’s width by its height)

• 3./4. parameter: near and far plane(usually
0.1f and 100.0f)

• All the vertices between the near and far
plane and inside the frustum will be
rendered

49
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH
/ (float)SCR_HEIGHT, 0.01f, 100.0f);

Perspective Projection

Too high near values (like 10.0f) results in clipping coordinates close
to the camera (between 0.0f and 10.0f)

Gives a familiar visual result in videogames in that you can see
through certain objects if you move too close to them

50

Perspective Projection

• Let us go back to our example:
• We want translate, scale, and rotate the plane

• We want to translate the midpoint to the origin: translate by − ҧ𝑝

• Scale it by 5

• Rotate around the x-axis by -30°

• Translate it along the y-axis by 35 units

51

Perspective

52

Perspective

• Projection matrix (aspect=800/600=4/3, fov=45°, far=-near=12):

53

Perspective

• We get:

54

Perspective

• In clip space the coordinates are finally divided by w:

55

Perspective Projection

• All together:

56

glm::mat4 model= glm::mat4(1.0f);
glm::mat4 view= glm::mat4(1.0f);
glm::mat4 projection = glm::mat4(1.0f);

model = glm::translate(model, glm::vec3(0.0f, -35.0f, 0.0f));
model = glm::rotate(model, glm::radians(-30.0f), glm::vec3(1.0, 0.0, 0.0));
model = glm::scale(model, glm::vec3(5.0));
model = glm::translate(model, glm::vec3(-7.5f, -7.5f, -10.0f));

glm::vec4 r1 = glm::vec4(1,0,0,0);
glm::vec4 r2 = glm::vec4(0, 0, 1, 0);
glm::vec4 r3 = glm::vec4(0, 1, 0, 0);
glm::vec4 r4 = glm::vec4(0, 0, 0, 1);
view = glm::mat4(r1, r2, r3, r4);

projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH /
(float)SCR_HEIGHT, -12.0f, 12.0f);

F5

• …done

57

More 3D

58

Introduction

• So far working with a 2D plane in 3D space

• Now extend it to a 3D cube

• To render a cube, need a total of 36 vertices (6 faces *
2 triangles * 3 vertices each)

59

float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,

-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,

-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,

0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,

-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,

-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f};

Introduction

• Now, we want to rotate the cube:

• And draw the cube using glDrawArrays, but this time with a count of
36 vertices:

60

model = glm::rotate(model, (float)glfwGetTime(), glm::vec3(0.5f, 1.0f, 0.0f));

glDrawArrays(GL_TRIANGLES, 0, 36);

F5

• A rotating cube

61

Introduction

• Some sides of the cubes are being drawn over other sides

• This happens because when OpenGL draws the cube triangle-by-
triangle, it will overwrite its pixels even though something else
might’ve been drawn there before

• Because of this, some triangles are drawn on top of each other while
they are not supposed to overlap

62

Introduction

• Luckily, OpenGL stores depth information in a buffer called the z-
buffer that allows OpenGL to decide when to draw over a pixel and
when not to

• Using the z-buffer we can configure OpenGL to do depth-testing

63

Z-Buffer

• GLFW automatically creates such a buffer

• The depth is stored within each fragment (z value) and whenever the
fragment wants to output its color, OpenGL compares its depth values
with the z-buffer and if the current fragment is behind the other
fragment it is discarded, otherwise overwritten

• This process is called depth testing and is done automatically by
OpenGL

64

Z-Buffer

• To make sure OpenGL actually performs the depth testing we need to
enable it (disabled by default) by using glEnable

• glEnable and glDisable functions allow to enable/disable certain
functionalities in OpenGL

• That functionality is then enabled/disabled until another call is made
to disable/enable it

• To enable depth testing by enabling GL_DEPTH_TEST:

65

glEnable(GL_DEPTH_TEST);

Z-Buffer

• By using a depth buffer, also want to clear the depth buffer before
each render iteration (otherwise the depth information of the
previous frame stays in the buffer)

• Just like clearing the color buffer, clear the depth buffer by specifying
the DEPTH_BUFFER_BIT bit in the glClear function:

66

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

F5

• A rotating cube with
correct depth

67

More Cubes

• Let’s display 10 cubes on screen with
different positions and rotations

• Only thing we have to change for each
object is its model matrix

• First, define a translation vector for each
cube that specifies its position in world
space.

• Define 10 cube positions in a glm::vec3 array

68

glm::vec3 cubePositions[] = {
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(2.0f, 5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3(2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f, 3.0f, -7.5f),
glm::vec3(1.3f, -2.0f, -2.5f),
glm::vec3(1.5f, 2.0f, -2.5f),
glm::vec3(1.5f, 0.2f, -1.5f),
glm::vec3(-1.3f, 1.0f, -1.5f)

};

More Cubes

• Within the game loop call the glDrawArrays function 10 times, but
each with a different model matrix

69

glBindVertexArray(VAO);
for (unsigned int i = 0; i < 10; i++)
{
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * i;
model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
ourShader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
}

F5

• … so we are many now!

70

Projections*

71

Introduction

• Prerequisite: Camera in origin, view along the (negative) z-axis

• Goal: 2D coordinates in the view plane

• Near and far defined along z-axis

• Orthographic:
• The z-values are of no relevance

• Perspective:
• The Pixel values result from the intercept theorem (later)

72

Orthographic

• We have parallel rays from the point
on the view plane

• With a given point, what are the
NDC in the view plane?

• Again, the box is defined with left,
right; bottom, top; near, far

73

Orthographic

• Exemplarily, we have a closer look a the 𝑥-coordinate

• If the 𝑥 component is equal the left value, then it should become -1
• 𝑁𝐷𝐶𝑋 𝑙𝑒𝑓𝑡 = −1

• If the 𝑥 component is equal the right value, then it should become 1
• 𝑁𝐷𝐶𝑋 𝑟𝑖𝑔ℎ𝑡 = 1

• In between it should be linearized
• 𝑁𝐷𝐶𝑋 𝑥 = 𝑚𝑥 + 𝑛

74

Orthographic

75

𝑁𝐷𝐶𝑋 𝑙𝑒𝑓𝑡 = −1
𝑁𝐷𝐶𝑋 𝑟𝑖𝑔ℎ𝑡 = 1
𝑁𝐷𝐶𝑋 𝑥 = 𝑚𝑥 + 𝑛

Orthographic

76

𝑁𝐷𝐶𝑋 𝑙𝑒𝑓𝑡 = −1
𝑁𝐷𝐶𝑋 𝑟𝑖𝑔ℎ𝑡 = 1
𝑁𝐷𝐶𝑋 𝑥 = 𝑚𝑥 + 𝑛

Orthographic

77

Orthographic

78

𝑁𝐷𝐶𝑍 −𝑛𝑒𝑎𝑟 = −1

𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 → [−𝑛𝑒𝑎𝑟, −𝑓𝑎𝑟]

Orthographic

79

Perspective

• We have rays starting from one
origin (camera)

• With a given point, what are the
NDC in the view plane?

• Again, the box is defined with left,
right; bottom, top; near, far

80

Perspective

81

Perspective

• Note, that we want the coordinates to be in NDC [-1,1] and that the
values are divided by 𝑝𝑤 at the end

82

Perspective

83

Perspective

• Dividing the values by w is not possible with a matrix, thus, the
projection matrix is of the form

84

Perspective

• Dividing the values by w is not possible with a matrix, thus, the
projection matrix is of the form

85

Perspective

86

𝑁𝐷𝐶𝑍 −𝑛 /𝑛 = −1
𝑁𝐷𝐶𝑍 −𝑓 /𝑓 = 1

𝑁𝐷𝐶𝑍 𝑧 = (𝐴𝑧 + 𝐵)/(−𝑧)

Perspective

• Finally:

87

Perspective

• …but we knew another representation?

88

Perspective

• View plane

89

Perspective

90

Perspective

• 𝑝′𝑦 should be in the allowed interval
[−1,1] so that’s ok

• 𝑝′𝑥 should be in the allowed interval
[−𝑎𝑟, 𝑎𝑟], we divide it by 𝑎𝑟 then it is in
[−1,1] so that’s ok

91

Perspective

• This yields:

92

Depth

• Non-linear relationship of 𝑧′ and 𝑧

• High values → little precision

93

Questions???

94

