Computer Graphics

- Textures

J.-Prof. Dr. habil. Kai Lawonn



Infroduction

* Objects can be colored for each vertex to create some interesting
Images

* To add realism we have to add many vertices so we could specify a lot
of colors = considerable amount of extra overhead (every object
would need more vertices)



Infroduction

e Artists and programmers generally prefer to use a texture

e A texture is a 2D image (even 1D and 3D textures exist) used to add
detail to an object, e.g., think of brick texture on the object

e Can insert a lot of detail in a single image, without having to specify
extra vertices



Infroduction

* A rectangle with a brick texture

B ' LearnOpenGL




Infroduction

Aside from images, textures can also be used to store a large
collection of data to send to the shaders.



Infroduction

* To map a texture to the triangles, texture coordinate (TC) are needed
for the vertices

* Fragment interpolation then does the rest for the other fragments.
* TCrange from O to 1 in the x and y axis
e Retrieving the texture color using TC is called sampling

e TC start at (0,0) for the lower left corner of a texture image to (1,1) for
the upper right corner of a texture image



Infroduction

* The following image shows how we map texture coordinates to the

triangle:
(0,1) (1,1)

(0,0) (1,0)



Infroduction

* The following image shows how we map texture coordinates to the

triangle:
(0,1) (1,1)

float vertices[] = {
// positions // colors // texture coords
0.5f, ©.5f, 0.of, 1.ef, 0.0f, 0.0f, 1.0f, 1l.0f,
0.5f, -0.5f, o0.ef, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, e0.ef, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f
}s
unsigned int indices[] = {
o, 1, 3, // first triangle

1, 2, 3 // second triangle

}s

(0,0) (1,0)



Texture Wrapping



Texture Wrapping

e TC usually range from (0,0) to (1,1), what if coordinates outside this
range

* Default behavior of OpenGL: repeat the texture images, but there are
more options OpenGL offers:

 GL_REPEAT: The default behavior for textures. Repeats the texture image

* GL_MIRRORED_REPEAT: Same as GL_REPEAT but mirrors the image with each
repeat

« GL_ CLAMP_TO_EDGE: Clamps the coordinates between 0 and (higher
coordinates become clamped to the edge = resulting in a stretched edge
pattern

* GL_CLAMP_TO_BORDER: Coordinates outside the range are now given a user-
specified border color



Texture Wrapping

 Left TC and right the image to be mapped

(-1,2) (2,2)

(-1,-1) (2,-1)



Texture Wrapping

* Different settings

L T T
AT ARy ’%,%‘

-, -,

I @ m L TR
@"%‘t@'mﬁ%@m
v~y 7~ I

e Tes e A

GL_REPEAT

Lo &0 OIS G a0 Bl 0w e 0 7 0
PR
T o N T ST e
=
X

P ‘
SR AN A
(S5 \wy w9272 gy
 — <> R |
DT I s o
1@@W@iﬂa@@¢
R R P B E

" GL_MIRRORED_REPEAT |

(-1,2)

(2,2)

(-1,-1)

GL_CLAMP_TO_EDGE

_

—
—

(2,-1)

H

RS

>

-

GL_CLAMP_TO_BORDER

12



Texture Wrapping

* Options can be set per coordinate axis (s, t (and r for 3D textures)
equivalent to x,y,z) with the glTexParameter* function:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE 2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

* First argument: specifies the texture target (2D textures =
GL_TEXTURE_2D)

e Second argument: option we want to set and for which texture axis:
configure the WRAP option and specify it for both the S and T axis.

* Last argument: texture wrapping mode



Texture Wrapping

e Set different modes:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE 2D, GL_TEXTURE_WRAP T, GL_CLAMP_TO EDGE);

14



Texture Wrapping

* If GL_CLAMP_TO_BORDER option is used, a border color should be
defined:

* This is done using the fv equivalent of the glTexParameter function
with GL_TEXTURE_BORDER_COLOR:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP T, GL_CLAMP_TO BORDER);

float borderColor[] = { 88 / 255.0f, 236 / 255.0f, 248 / 255.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);



Texture Wrapping

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_ T, GL_CLAMP_TO BORDER);

float borderColor[] = { 88 / 255.0f, 236 / 255.0f, 248 / 255.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_ 2D, GL_TEXTURE_BORDER_COLOR, borderColor);

16



Texture Filtering

* TC do not depend on resolution, but can be any floating point value

* OpenGL has to figure out which texture pixel (also known as a texel)
to map the texture coordinate to

* Especially important if you have a very large object and a low
resolution texture

* OpenGL has options for this texture filtering
* The most important options: GL_NEAREST and GL_LINEAR



Texture Filtering

 GL_NEAREST (nearest neighbor filtering):

» Default texture filtering method
* Selects the pixel which center is closest to the TC

(0.2,0.8)
? (0,1) (1,1)

(Y (1,0)




Texture Filtering

 GL_LINEAR ((bi)linear filtering):

* Interpolated value from the TC’s neighboring texels, approximating a color
between the texels

(0.2,0.8)
? (0,1) (1,1)

(0,0) (1,0)




Texture Filtering




Texture Filtering

GL_NEAREST GL _LINEAR
* GL_NEAREST results in blocked . |
patterns

* GL_LINEAR produces a smoother
pattern where the individual
pixels are less visible

* GL_LINEAR produces a more
realistic output, but some
developers prefer a pixel look and
pick the GL_NEAREST option

21



Texture Wrapping

e Texture filtering can be set for magnifying and minifying operations
(when scaling up or downwards)

* For example use nearest neighbor filtering when textures are scaled
downwards and linear filtering for upscaled textures

* Specify the filtering method for both options via glTexParameter*:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);



MIpMAaps



Infroduction

* Imagine we render a large room with thousands of textured objects

* Some objects are far away, but have the same high resolution texture
attached as the objects close to the viewer

* The objects, which are far away produce a few fragments and OpenGL
has difficulties retrieving the right color from the high resolution
texture

* A fragment spans a large part of the texture = produce visible
artifacts on small objects

* Furthermore, it is a waste of memory to use high resolution textures
on small objects



Infroduction

* To solve this, OpenGL uses mipmaps: a collection of texture images
where each subsequent texture is twice as small

* |dea: after a certain distance threshold from the viewer, OpenGL will
use a different mipmap texture that best suits the distance to the

object

* The far away the object, the smaller the resolution (not noticeable to
the user)

* Mipmaps are good for performance



Infroduction

 Creating a collection of
mipmapped textures for
each texture image is
cumbersome

* Luckily OpenGL is able to do
it via glGenerateMipmaps
after the created texture
(more on this later)




Infroduction

e Some artifacts may show up, when switching between two mipmap
levels (like sharp edges)

* Like normal texture filtering, it is also possible to filter between
mipmap levels using NEAREST and LINEAR filtering for switching
between mipmap levels



Infroduction

* To specify the filtering method between mipmap levels, four options
are available:
* GL_NEAREST_MIPMAP_NEAREST: takes the nearest mipmap to match the
pixel size and uses nearest neighbor interpolation for texture sampling

* GL _LINEAR_MIPMAP_NEAREST: takes the nearest mipmap level and samples
using linear interpolation

* GL _NEAREST_MIPMAP_LINEAR: linearly interpolates between the two
mipmaps that most closely match the size of a pixel and samples via nearest
neighbor interpolation

 GL LINEAR_MIPMAP_LINEAR: linearly interpolates between the two closest
mipmaps and samples the texture via linear interpolation



Texture Wrapping

* Similar to texture filtering, set filtering method to one of the 4
aforementioned methods using glTexParameteri:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG _FILTER, GL_LINEAR);

A common mistake is to set one of the mipmap filtering options as the
magnification filter (doesn’t have any effect since mipmaps are primarily
used for when textures get downscaled)

* Texture magnification doesn’t use mipmaps and giving it a mipmap filtering
option will generate an OpenGL GL_INVALID_ENUM error code



Comparison

N
S —

GL_NEAREST_MIPMAP_NEAREST GL_LINEAR_MIPMAP_NEAREST GL_NEAREST_MIPMAP_LINEAR GL_LINEAR_MIPMAP_LINEAR




Loading and Creating Textures



Loading and Creatfing Textures

* The first thing to do: load textures into the application

* Texture images can be stored in dozens of file formats, each with their
own structure and ordering of data

* To load them, one solution is to choose a file format, e.g., PNG, and
write an image loader

* Not very hard, but cumbersome (what about other formats?)
* Then write an image loader for each format

* = We use the library stb_image.h



stb_Image.h

e stb_image.h is a popular single header image loading library
* Able to load most popular file formats
* Easy to integrate in your project(s)

 Download the single header file, add it to your project as stb_image.h
and create an additional C++ file with the following code:

#define STB_IMAGE IMPLEMENTATION
#include <stb_image.h>


https://github.com/nothings/stb/blob/master/stb_image.h

stb_Image.h

#define STB_IMAGE_ IMPLEMENTATION
#include <stb_image.h>

* ##define STB_IMAGE_IMPLEMENTATION: preprocessor modifies the
header file such that it only contains the relevant definition source
code, effectively turning the header file into a .cpp file

* Then include stb_image.h
* To load an image using stb_image.h, use its stbi_load function:

int width, height, nrChannels;
stbi set flip vertically on load(true); // flip loaded texture's on the y-axis.
unsigned char* data = stbi load(“texture.jpg", &width, &height, &nrChannels, 0);



stb_Image.h

int width, height, nrChannels;
stbi_set flip vertically on load(true); // flip loaded texture's on the y-axis.
unsigned char* data = stbi load(“texture.jpg", &width, &height, &nrChannels, 0);

* Need to flip the y-axis
* First argument location of an image file

* Then three ints: width, height and number of color channels of the
Image

* Last argument forces number of channels (set to O to keep
nrChannels)



Generating a Texture

* Textures are referenced with an ID (Like any previous objects)
* glGenTextures: first input number of texture names to be generated
* stores, second stores them in a unsigned int array

* Finally, binding so any subsequent texture commands will configure
the currently bound texture:

unsigned int texture;
glGenTextures (1, &texture);
glBindTexture(GL_TEXTURE_ 2D, texture);



Generating a Texture

e After texture bound, generate a texture using the previously loaded
image data
e Textures are generated with glTexlmage2D:

glTexImage2D(GL_TEXTURE_2D, @, GL _RGB, width, height, ©, GL RGB,

GL_UNSIGNED BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);



Generating a Texture

glTexImage2D(GL_TEXTURE_ 2D, @, GL_RGB, width, height, ©, GL RGB,
GL_UNSIGNED BYTE, data);

* 1. specifies texture target; GL TEXTURE_2D - generate a texture on the
currently bound texture object at the same target (other textures bound to
targets GL_ TEXTURE_1D or GL_TEXTURE_3D will not be affected)

2. specifies the mipmap level 0 means base (interesting manual mipmap levels)
3. tells format of the texture (image has only RGB values > GL_RGB)

4./5. sets the width and height of the resulting texture

6. should always be 0 (some legacy stuff) (khronos states the same)

7./8. specify the format and datatype of the source image (loaded the image with
RGB values and stored them as chars (bytes))

9. actual image data



Generating a Texture

* Note: OpenGL assembles textures automatically into an RGBA

e E.g., using GL_RED: “GL converts it to floating point and assembles it
into an RGBA element by attaching O for green and blue, and 1 for
alpha. Each component is clamped to the range [0,1].”


https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml

Generating a Texture

glGenerateMipmap (GL_TEXTURE_2D);

* After glTexImage2D is called, the currently bound texture object now
has the texture image attached to it

* It only has the base-level of the texture image loaded, for mipmaps
either set it manually or call glGenerateMipmap after generating the
texture

* Automatically generate all the required mipmaps for the currently
bound texture



Generating a Texture

* Finally, it is good practice to free the image memory:

stbi_image free(data);



All fogether

unsigned int texture;
glGenTextures(1l, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// set the texture wrapping parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
// set texture filtering parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// load image, create texture and generate mipmaps
int width, height, nrChannels;
stbi set flip vertically on load(true); // flip loaded texture's on the y-axis.
unsigned char *data = stbi load("texture.jpg", &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_2D, @, GL_RGB, width, height, @, GL_RGB,
GL_UNSIGNED BYTE, data);
glGenerateMipmap (GL_TEXTURE_2D);

else

{

std::cout << "Failed to load texture" << std::endl;

}

stbi_image free(data);



Applying Textures

* We will use the rectangle shape drawn with gIlDrawElements

* Again:
: (0,1) (1,1)
float vertices[] = {
// positions // colors // texture coords
0.5f, ©.5f, 0.of, 1.ef, 0.0f, 0.0f, 1.0f, 1l.0f,
0.5f, -0.5f, o0.ef, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, e0.ef, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f
}s
unsigned int indices[] = {
o, 1, 3, // first triangle
1, 2, 3 // second triangle
}s

(0,0) (1,0)



Applying Textures

* New vertex format:

Vertex 1 Vertex 2 Vertex 3

Byte: 0 4 8 12 16 20 24 28 32 36 ..



Applying Textures

* This results in:

// position attribute

glVertexAttribPointer(®, 3, GL_FLOAT, GL _FALSE, 8 * sizeof(float), (void*)9);

glEnableVertexAttribArray(0);
// color attribute

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3

* sizeof(float)));
glEnableVertexAttribArray(1);
// texture coord attribute

glVertexAttribPointer(2, 2, GL _FLOAT, GL FALSE, 8 * sizeof(float), (void*)(6

* sizeof(float)));
glEnableVertexAttribArray(2);

Vertex 1

Vertex 2

Vertex 3

Byte: 0 4 8 12 16 20 24 28 32 36 ..

45




Applying Textures

* Change the vertex shader:

#version 330 core

layout (location = @) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;

out vec3 ourColor;
out vec2 TexCoord;

void main()
{
gl Position = vec4(aPos, 1.90);
ourColor = aColor;
TexCoord = vec2(aTexCoord.x, aTexCoord.y);



Applying Textures

* GLSL has a built-in data-type for texture objects: sampler

#version 330 core
out vec4 FragColor;

in vec3 ourColor;
in vec2 TexCoord;

// texture sampler
uniform sampler2D texturel;

void main()

{
}

FragColor = texture(texturel, TexCoord);



Applying Textures

FragColor = texture(texturel, TexCoord);

* To sample the color of a texture, use the texture function:
* 1. argument: a texture sampler
e 2. argument: the corresponding texture coordinate.

e Texture function samples the corresponding color value using the
texture parameters we set earlier

e OQutput of this fragment shader is then the (filtered) color of the
texture at the (interpolated) texture coordinate



Applying Textures

* Last, bind the texture before calling the glDrawElements and it will
then automatically assign the texture to the fragment shader’s

sampler:

glBindTexture(GL_TEXTURE_2D, texture);

glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL _UNSIGNED INT, ©);



... a rectangle with a texture!

50



Add Colors

* Now, we want to use the color as well (fragment shader):

FragColor = texture(texture, TexCoord)*vec4(ourColor, 1.0);

51



Texture Units



Texture Units

* Why is the sampler2D variable a uniform?
* Didn’t even assign it some value with glUniform

e With glUniform1i a location value can be assigned to the texture
sampler: multiple textures can be set at once in a fragment shader

* This location of a texture is known as a texture unit
* The default texture unit for a texture is O (default active texture unit)

* Note: not all graphics drivers assign a default texture unit = previous
section might not have rendered



Texture Units

e Texture units allow to use more than 1 texture in shaders

* By assigning texture units to the samplers, multiple textures can be bind at
once as long as they activate the correspondin texture unit first

* Like gIlBindTexture, activate texture units using glActiveTexture:

// bind textures on corresponding texture units
glActiveTexture(GL_TEXTURE®);
glBindTexture(GL_TEXTURE_2D, textureo);

» After activating a texture unit, a subsequent glBindTexture call will bind
that texture to the currently active texture unit

* (GL_TEXTUREDO is always by default activated)



Texture Units

OpenGL should have a at least a minimum of 16 texture units to use.
Can be activated using GL_TEXTUREO to GL_TEXTURE15.

They are defined in order so we could also get GL_TEXTURES via
GL_TEXTUREO + 8 (useful for loop over several texture units).

55



Texture Units

* Need to edit the fragment shader to accept another sampler:

#tversion 330 core

uniform sampler2D ourTexturel;
uniform sampler2D ourTexture2;
void main()

{

FragColor = mix(texture(ourTexturel, TexCoord), texture(ourTexture2, TexCoord), 0.2);

}



Texture Units

* Final output color is now the combination of two texture lookups

e GLSL’s built-in mix function: takes two values as input and linearly
interpolates between them based on its third argument:

miz(x,y,a) =x- (1l —a)+y-a



Texture Units

* Now, create, load and generate another texture using glTexImage2D

* To use the second texture (and the first texture), change the
rendering procedure a bit by binding both textures to the

corresponding texture unit:

// bind textures on corresponding texture units
glActiveTexture(GL_TEXTURE®);
glBindTexture(GL_TEXTURE_ 2D, texturel);
glActiveTexture(GL_TEXTURELl);
glBindTexture(GL_TEXTURE_ 2D, texture2);

glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED INT, O);

58



Texture Units

* Tell OpenGL to which texture unit each shader sampler belongs to by
setting each sampler using glUniform1i

* Set this once, so can do this before the render loop:

ourShader.use();

// either set it manually like so:
glUniformli(glGetUniformLocation(ourShader.ID, "texturel"), 0);
// or set it via the texture class

ourShader.setInt("texture2", 1);

while (..)
{

}

[..]



FS

... faces on brick

60



Mipmaps II*



Infroduction

* Sometimes it is necessary to generate the mipmaps manually
* Automatically generated mipmaps may fail for certain textures



Example

* Manually generated
mipmap textures




Example

* Top — Original
e Left — Manually generated
* Right — GL generated

64



Infroduction

* Generate an image pyramid (256x256, 128x128, 64x64, 32x32 pxs):

| ]




Set Up

* Set the max level of the mipmap pyramid, the base layer is O:

glTexParameteri(GL_TEXTURE_ 2D, GL_TEXTURE_MIN FILTER,GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

// set pyramid level (no. of images - 1)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 3);

66



Set Up

* Load the images (we set the width and height manually later, do not
worry about over writing):

unsigned char* data = stbi load("lnl.jpg", &width, &height, &nrChannels, 0);
unsigned char* data2 = stbi load("1ln2.jpg", &width, &height, &nrChannels, 0);
unsigned char* data3 = stbi load("1n3.jpg", &width, &height, &nrChannels, 0);
unsigned char* data4 = stbi load("1ln4.jpg", &width, &height, &nrChannels, 0);



Set Up

* Specify the 2D textures and set the mipmap level (2"? argument):

if (data && data2 && data3 && datad)

{

glTexImage2D(GL_TEXTURE_2D, @, GL_RGB, 256, 256, ©, GL_RGB, GL_UNSIGNED BYTE,
data);

glTexImage2D(GL_TEXTURE_2D, 1, GL_RGB, 128, 128, 0, GL_RGB, GL_UNSIGNED BYTE,
data2);

glTexImage2D(GL_TEXTURE_2D, 2, GL_RGB, 64, 64, 0, GL_RGB, GL_UNSIGNED BYTE,
data3);

glTexImage2D(GL_TEXTURE 2D, 3, GL_RGB, 32, 32, @, GL_RGB, GL_UNSIGNED BYTE,
datad);

//glGenerateMipmap(GL_TEXTURE_2D);

}

68



Make an Animation

* We upload a uniform (in the render loop):

float time = glfwGetTime();
ourShader.use();
ourShader.setFloat("time", time);



Make an Animation

e \Vertex shader:

#version 330 core
layout (location = @) in vec3 aPos;

uniform float time;
void main()
{
float t=sin(time/3)*0.5+0.5;

vec2 dir=vec2(0)-aPos.xy;

gl Position.xy=aPos.xy+t*dir;



FS5...

... we get an animation with manually generated mipmaps

71



Discard*



Infroduction

* Sometimes, we do not want to draw stuff in the fragment shader

 What if we are interested in objects behind a certain object, e.g., if
we load a window texture, we do not want the glass texture drawn
over the stuff behind it



Infroduction

* Let’s assume we have the following texture

* We only want to draw the grid, but we want to
omit the green part

74



Discard

* First, create a Boolean vector:

vecd col = texture(texturel, TexCoord);
bvec3 greenColor = bvec3(col.r < 0.1, col.g»0.9, col.b<0.1);
* Bvec3 is a three dimensional vector

* Because we deal with a jpg image, we use thresholds for the green
color otherwise we could ask if the color is identical to (0,1,0)



Discard

* If all components of the bvec3 are true, we discard the fragment
otherwise, we assign it to red:

if(all(greenColor))
discard;
else
FragColor.rgb=vec3(1,0,0);

* The function all(.) returns true if all components are true, too



Discard

* Final fragment shader:

#version 330 core
out vecd4 FragColor;

in vec2 TexCoord;
uniform sampler2D texturel;

void main()
{
vec4 col = texture(texturel, TexCoord);
bvec3 greenColor = bvec3(col.r < 0.1, col.g»9.9, col.b<0.1);
if(all(greenColor))
discard;
else
FragColor.rgb=vec3(1,0,0);



FS5...

... we get a red grid

78



Take a Screenshot*



Infroduction

* A basic feature for a graphics tool is to take a screenshot

* We want to press a key, e.g., ’s’ and this results in a screenshot, which
will be stored on the hard drive



Write PNG

* We already met the stb_image.h header to load images

* But, we also need a library that saves images: stb_image write.h
* Download the library and include it in the project

* Do not forget #define... as this is necessary for the usage

#define STB_IMAGE WRITE IMPLEMENTATION
#include <stb_image write.h>

81


https://github.com/nothings/stb/blob/master/stb_image_write.h

Press ,S°

* We extent the processinput function to check whether the key ‘S’ was
pressed:

void processInput(GLFWwindow *window)

{
if (glfwGetKey(window, GLFW_KEY ESCAPE) == GLFW_PRESS)

glfwSetWindowShouldClose(window, true);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)

(.}

82



Press ,S°

* This code captures the window and saves the image as
‘screenshot.png’

if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)

{
int width, height;
glfwGetWindowSize(window, &width, &height);

new GLubyte[width * height * 4];

GLubyte* screen

glReadPixels(@, 0, width, height, GL _RGBA, GL_UNSIGNED BYTE, screen);
stbi_write png("screenshot.png", width, height, 4, screen, 0);
delete[] screen;

83



Press ,S°

glReadPixels(@, @, width, height, GL _RGBA, GL_UNSIGNED BYTE, screen);

 g|ReadPixels (arguments):
* 1./2.: window coordinates of the first pixel (location is the lower left corner)
3./4.: dimensions of the window (bottom right)
5.: format of the pixel data
6.: data type
7.: returns the pixel data



Press ,S°

stbi write png("screenshot.png", width, height, 4, screen, 0);

* stbi_write_png (arguments):
e 1.: filename
 2./3.: width, height of the screenshot
e 4.: components (4 2 RGBA)
e 5. pixel data
* 6. stride



Fo— S...

...and we get a nice screenshot saved on the hard drive



QO

Q
§
s
stion
g7
PP



