
Computer Graphics
- Model Loading

J.-Prof. Dr. habil. Kai Lawonn

Assimp

2

Introduction

• So far, we mostly worked with a box

• Now, we want to work with more complicated and interesting models

• Unlike the box, we can’t manually define all the vertices, normals and
texture coordinates of complicated shapes like houses, vehicles or
human-like characters

• Goal is to import these models into the application; models that were
carefully designed by 3D artists in tools like Blender, 3DS Max or Maya

3

Introduction

• 3D modeling tools allow artists to create complicated shapes and
apply textures (via uv-mapping)

• The tools generate the vertex coordinates, normals and texture
coordinates

• This way, artists can create high quality models without having to care
too much about the technical details (technical aspects are hidden in
the exported model file)

4

Introduction
• Our job to parse these exported model files and extract all the relevant

information so we can store them in a format that OpenGL understands

• A common issue is however that there are dozens of different file formats
where each exports the model data in its own unique way

• Model formats like the Wavefront .obj only contains model data with minor
material information like model colors and diffuse/specular maps

• Model formats like the XML-based Collada file format are extremely
extensive and contain models, lights, many types of materials, animation
data, cameras, complete scene information and much more

• The .obj format is generally considered to be an easy-to-parse model
format

5

Introduction

• All by all, there are many file formats where a common general
structure between them usually does not exist

• Have to write an own importer if we want to import a model from
these file formats

• Luckily, there just happens to be a library for this

6

Assimp

• A very popular model importing library out there is called Assimp that
stands for Open Asset Import Library

• Assimp is able to import dozens of different model file formats (and
export to some as well)

• As soon as Assimp has loaded the model, we can use it to process the
data

• Data structure of Assimp stays the same, regardless of the type of file

7

Assimp

• Importing a model via Assimp it loads the entire model into a scene

• It has a collection of nodes where each node contains data

• Each node can have any number of children:

8

Assimp
• All the data is contained in the Scene object (materials and the meshes)

• Root node’s mMeshes array contains the actual Mesh objects, the values in
the mMeshes array of a node are only indices for the scene’s meshes array

• A Mesh contains all the relevant data, e.g., vertex positions, normal
vectors, texture coordinates, faces and the material

• A mesh contains faces representing a render primitive (triangles, squares,
points)

• A face contains the indices of the vertices that form a primitive → easy to
render via an index buffer

• A mesh also contains a Material object, e.g., consists of colors and/or
texture maps (like diffuse and specular maps)

9

Assimp

• Goal: load an object into a Scene object

• Get the Mesh object to retrieve the vertex data, indices and its
material properties

• The result is then a collection of mesh data that we want to contain in
a single Model object

10

Model

When modelling objects in modelling toolkits, artists generally do not
create an entire model out of a single shape (each model has several sub-

models/shapes)

Each of those single shapes that a model is composed of is called a mesh.

Think of a human-like character: artists usually model the head, limbs,
clothes, weapons all as separate components and the combined result of

all these meshes represents the final model.

A single mesh is the minimal representation of what we need to draw an
object in OpenGL (vertex data, indices and material properties).

A model (usually) consists of several meshes.

11

Building Assimp

12

Building Assimp

• First, go to http://assimp.org/ and download the
newest version

• Afterwards, unzip the folder

13

http://assimp.org/

Building Assimp

14

• Open Cmake

• Enter the correct
path

• ‚Configure‘

• Select the correct
VS version

Building Assimp

• After (probably a few warnings) click ‚Generate‘

• In the newly created ‘build’ folder open
Assimp.sln

• Press ‘F5’ and pray

15

Building Assimp

• Depending on the VS settings, the .dll and .lib
will be in the code/Debug or code/Release
folder

16

Building Assimp

• Two options:

• 1. The simplest approach is to copy the .dll file to the folder
where the compiled .exe is located

17

Building Assimp

• Two options:

• 2. Copy the .dll and the .lib to our lib folder; in VS go to
Project>Properties>Configuration Properties>Debugging in the
"Environment" property type:
PATH=C:\Projects\Computer Graphics\resources\lib;$(ExecutablePath)

18

Building Assimp

• It helps to do the previous step in the
3.model_loading__1.model_loading project

• Once it compiles you did everything correct (otherwise you get an
error, which states that the .dll cannot be found)

19

Mesh

20

Introduction

• Assimp can load many different models into the application in their
own data structures

• We need to transform that data to a format that OpenGL understands
so that we can render the objects

• Let’s start by defining a mesh class of our own

• A mesh should at least need a set of vertices where each vertex
contains a position vector, a normal vector and a texture coordinate
vector

• A mesh should also contain indices for indexed drawing and material
data in the form of textures (diffuse/specular maps)

21

Introduction

• For a mesh class we define a vertex in OpenGL:

• The required vectors are stored in aa struct called Vertex that we can
use to index each of the vertex attributes

22

struct Vertex {
glm::vec3 Position;
glm::vec3 Normal;
glm::vec2 TexCoords;

};

Introduction

• Aside from a Vertex struct we also want to organize the texture data
in a Texture struct:

• We store the id of the texture and its type e.g. a diffuse texture or a
specular texture

23

struct Texture {
unsigned int id;
string type;

};

Introduction

• Knowing the actual representation of a vertex and a texture, start
defining the structure of the mesh class:

24

class Mesh {
public:

vector<Vertex> vertices;
vector<unsigned int> indices;
vector<Texture> textures;

Mesh(vector<Vertex> vertices, vector<unsigned int> indices,
vector<Texture> textures);

void Draw(Shader &shader);

private:
unsigned int VAO, VBO, EBO;
void setupMesh();

};

Introduction

• Constructor contains all the necessary data

• In the setupMesh function the buffers will be initialized

• The mesh will be drawn in the Draw function

• Note, that a shader is given to the Draw function → can set several
uniforms before drawing (like linking samplers to texture units)

25

Introduction

• Constructor sets the class’s public variables with the constructor’s
corresponding argument variables

• Then call the setupMesh function

26

Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture>
textures)

{
this->vertices = vertices;
this->indices = indices;
this->textures = textures;

setupMesh();
}

Initialization

• Now, set up the setupMesh function

27

void setupMesh()
{

glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);

glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0],
GL_STATIC_DRAW);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int),
&indices[0], GL_STATIC_DRAW);

Initialization

• Now, set up the setupMesh function

28

glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
// vertex normals
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(void*)offsetof(Vertex, Normal));
// vertex texture coords
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(void*)offsetof(Vertex, TexCoords));

glBindVertexArray(0);
}

Initialization

• Advantage: Structs’ memory layout is sequential

• Represent a struct as an array contains the struct’s variables in
sequential order, which directly translates to a float (actually byte)
array that we want for an array buffer

• For example, if we have a filled Vertex struct its memory layout would
be equal to:

29

Vertex vertex;
vertex.Position = glm::vec3(0.2f, 0.4f, 0.6f);
vertex.Normal = glm::vec3(0.0f, 1.0f, 0.0f);
vertex.TexCoords = glm::vec2(1.0f, 0.0f);
// = [0.2f, 0.4f, 0.6f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f];

Initialization

• With this, we can directly pass a pointer to a large list of Vertex
structs as the buffer’s data and they translate perfectly to what
glBufferData expects as its argument:

• Sizeof operator can also be used on the struct for the appropriate size
in bytes (should be 32 bytes (8 floats * 4 bytes each))

30

glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0],
GL_STATIC_DRAW);

Initialization

• Another advantage: a preprocessor directive called offsetof(s,m)

• First argument is a struct

• Second argument a variable name of the struct

• It returns the byte offset of that variable from the start:

• Note, also set the stride parameter equal to the size of the Vertex
struct

31

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(void*)offsetof(Vertex, Normal));

Initialization

• Using a struct like this provides more readable code and flexibility to
easily extend the structure

• Can simply add another vertex attribute we and the rendering code
won’t break

32

Rendering

• The last function to define is the Draw function

• First, want to bind the appropriate textures before calling
glDrawElements

• Actually, difficult because we don’t know how many (if any) textures
the mesh has and what type they might have

• So how do we set the texture units and samplers in the shaders?

33

Rendering

• For this, assume certain naming convention:
• diffuse texture: texture_diffuseN

• specular texture: texture_specularN where N is the maximum number

• Say we have 3 diffuse textures and 2 specular textures for a particular
mesh, their texture samplers should then be called:

34

uniform sampler2D texture_diffuse1;
uniform sampler2D texture_diffuse2;
uniform sampler2D texture_diffuse3;

uniform sampler2D texture_specular1;
uniform sampler2D texture_specular2;

Rendering

• By this convention, define as many texture samplers as we want in
the shaders and if a mesh actually does contain (so many) textures we
know what their names

• Can also process any amount of textures on a single mesh and the
developer is free to use as many of those as s/he wants by simply
defining the proper samplers

35

Rendering

There are many solutions to problems like this, don’t hesitate to come
up with your own creative solution.

36

Rendering

• The resulting drawing code then becomes:

37

void Draw(Shader &shader)
{

unsigned int diffuseNr = 1;
unsigned int specularNr = 1;
for(unsigned int i = 0; i < textures.size(); i++)

{
glActiveTexture(GL_TEXTURE0 + i);
string number;
string name = textures[i].type;
if(name == "texture_diffuse")
number = std::to_string(diffuseNr++);

else if(name == "texture_specular")
number = std::to_string(specularNr++);

Rendering

• The resulting drawing code then becomes:

38

glUniform1i(glGetUniformLocation(shader.ID, (name +
number).c_str()), i);
glBindTexture(GL_TEXTURE_2D, textures[i].id);

}
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
glActiveTexture(GL_TEXTURE0);

}

Rendering

• First calculate the N-component per texture type and concatenate it
to the texture’s type string to get the appropriate uniform name

• We then locate the appropriate sampler, give it the location value to
correspond with the currently active texture unit and bind the texture

• This is also the reason we need the shader in the Draw function

• Also added "material." to the resulting uniform name because we
usually store the textures in a material struct

39

Rendering

Remember:

variable++ returns the variable and then increments it

++variable increments the variable and then returns it

40

Model

41

Introduction

• Now, we create another class that represents a model in its entirety,
that is, a model that contains multiple meshes, possibly with multiple
objects, e.g., a house, that contains a wooden balcony, a tower and
perhaps a swimming pool

• We’ll load the model via Assimp and translate it to multiple Mesh
objects we’ve created previously

42

Introduction

• Class structure of the Model class:

43

class Model
{
public:

/* Functions */
Model(char* path)
{

loadModel(path);
}
void Draw(Shader shader);

private:
/* Model Data */
vector<Mesh> meshes;
string directory;
/* Functions */
void loadModel(string path);
void processNode(aiNode* node, const aiScene* scene);
Mesh processMesh(aiMesh* mesh, const aiScene* scene);
vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type,

string typeName);
};

Introduction

• The Model class contains a vector of Mesh objects and requires us to
give it a file location in its constructor

• It then loads the file right away via the loadModel function that is
called in the constructor

• The private functions are all designed to process a part of Assimp’s
import routine

• Also store the directory of the file path that is later needed when
loading textures

44

Introduction

• The Draw function is nothing special and basically loops over each of
the meshes to call their respective Draw function

45

void Draw(Shader &shader)
{

for(unsigned int i = 0; i < meshes.size(); i++)
meshes[i].Draw(shader);

}

Importing a 3D model into OpenGL

• To import a model and translate it to our own structure, need to
include the appropriate headers of Assimp:

46

#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>

Importing a 3D model into OpenGL

• First, loadModel is called directly from the constructor

• Within loadModel use Assimp to load the model

• Assimp abstracts from all the technical details of loading all the
different file formats and does all this with a single one-liner:

47

Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate |
aiProcess_FlipUVs);

Importing a 3D model into OpenGL

• First declare an actual Importer object from Assimp’s namespace
(Assimp::Importer importer;)

• Then call its ReadFile (importer.ReadFile) function (expects a file
path and post-processing options)

• Assimp allows to specify several options to do some extra
calculations/operations on the imported data

• aiProcess_Triangulate: if the model does not (entirely) consist of
triangles it will be afterwards

• aiProcess_FlipUVs: flips the texture coordinates on the y-axis (most
images in OpenGL were reversed)

48

Importing a 3D model into OpenGL

• A few other useful options are:

• aiProcess_GenNormals : creates normals for each vertex (if not
available)

• aiProcess_SplitLargeMeshes : splits large meshes into smaller sub-
meshes, useful if rendering has a maximum number of vertices

• aiProcess_OptimizeMeshes : actually does the reverse by trying to
join several meshes into one larger mesh, reducing drawing calls for
optimization

49

Importing a 3D model into OpenGL

• The hard work lies in using the returned scene object to translate the
loaded data to an array of Mesh objects

• The complete loadModel function is listed here:

50

void loadModel(string const &path)
{

Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate |
aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{

cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;

}
directory = path.substr(0, path.find_last_of('/'));
processNode(scene->mRootNode, scene);

}

Importing a 3D model into OpenGL

• After loading, check if the scene and the root node of the scene are not
null and check one of its flags to see if the returned data is incomplete:
(if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode))

• If this is true, report an error via the importer’s GetErrorString function and
return
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl; return;

• Also retrieve the directory path of the given file path
directory = path.substr(0, path.find_last_of('/'));

• Then pass the first node (root node) to the recursive processNode function

• First process the node in question, and then continue processing all the
node’s children and so on → Recursive structure

51

Importing a 3D model into OpenGL

• Each node contains a set of mesh indices, each points to a specific
mesh located in the scene object

• Want to retrieve mesh indices, retrieve each mesh, process each
mesh and then do this all again for each of the node’s children nodes:

52

void processNode(aiNode *node, const aiScene *scene)
{

for(unsigned int i = 0; i < node->mNumMeshes; i++)
{

aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));

}
for(unsigned int i = 0; i < node->mNumChildren; i++)
{

processNode(node->mChildren[i], scene);
}

}

Importing a 3D model into OpenGL

• First check each of the node’s mesh indices and retrieve the
corresponding mesh by indexing the scene’s mMeshes array
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];

• Returned mesh is passed to the processMesh function returning a
Mesh
meshes.push_back(processMesh(mesh, scene));

• Afterwards, iterate all of the node’s children and call the same
processNode
processNode(node->mChildren[i], scene);

53

Importing a 3D model into OpenGL

We could basically forget about processing any of the nodes and
simply loop through all of the scene’s meshes directly without doing

all this complicated stuff with indices

The reason is that it defines a parent-child relation between meshes

By recursively iterating through these relations we can actually define
certain meshes to be parents of other meshes

To translate a car mesh, we can make sure that all its children (an
engine mesh, a steering wheel mesh and its tire meshes) translate as

well

54

Assimp to Mesh

• Translating an aiMesh object to a mesh object is not difficult

• Access each of the mesh’s relevant properties and store them in our
own object

55

Assimp to Mesh

• The general structure of the processMesh function then becomes:

56

Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{

vector<Vertex> vertices;
vector<unsigned int> indices;
vector<Texture> textures;
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{

Vertex vertex;
...
vertices.push_back(vertex);

}
...
if (mesh->mMaterialIndex >= 0)
{
...
}
return Mesh(vertices, indices, textures);

}

Assimp to Mesh

• Processing a mesh basically consists of 3 sections: retrieving all the
vertex data, retrieving the mesh’s indices and finally retrieving the
relevant material data

• The processed data is stored in one of the 3 vectors and from those a
Mesh is created and returned to the function’s caller

57

Assimp to Mesh

• Retrieving the vertex data is pretty simple: define a Vertex struct that
add to the vertices array after each iteration

• We loop for as much vertices there exist within the mesh (retrieved
via mesh->mNumVertices)

• Within the iteration fill this struct with all the relevant data

• For vertex positions this is done as follows:

58

glm::vec3 vector;
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;

Assimp to Mesh

Assimp calls their vertex position array mVertices

59

Assimp to Mesh

• Similar for the normals:

60

vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;

Assimp to Mesh

• Texture coordinates are roughly the same, but Assimp allows a model
to have up to 8 different texture coordinates per vertex

• Only care about the first set of texture coordinates also check if the
mesh actually contains texture coordinates:

61

if(mesh->mTextureCoords[0])
{

glm::vec2 vec;
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;

}
else

vertex.TexCoords = glm::vec2(0.0f, 0.0f);

Assimp to Mesh

• The vertex struct is now completely filled with the required vertex
attributes and we can push it to the back of the vertices vector:

62

vertices.push_back(vertex);

Indices

• Assimp defined each mesh having an array of faces representing a
single primitive (triangles in our case → aiProcess_Triangulate)

• A face contains the indices that define the vertices needed to draw

• So iterate over all the faces and store all the face’s indices in the
indices vector:

63

for(unsigned int i = 0; i < mesh->mNumFaces; i++)
{

aiFace face = mesh->mFaces[i];
for(unsigned int j = 0; j < face.mNumIndices; j++)

indices.push_back(face.mIndices[j]);
}

Material

• A mesh only contains an index to a material object → need to index
the scene’s mMaterials array

• The mesh’s material index is set in its mMaterialIndex property:

64

if (mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];

vector<Texture> diffuseMaps = loadMaterialTextures(material,
aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());

vector<Texture> specularMaps = loadMaterialTextures(material,
aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
}

Material

• First, retrieve the aiMaterial object from the scene’s mMaterials array

• Then load the mesh’s diffuse and/or specular textures

• A material object internally stores an array of texture locations for
each texture type, different texture types prefixed with
aiTextureType_

• Use a helper function called loadMaterialTextures to retrieve the
textures from the material → returns a vector of Texture structs that
we store at the end of the model’s textures vector

65

Material

• loadMaterialTextures function iterates over all the texture locations,
retrieves the texture’s file location and then loads and generates the
texture and stores the information in a Vertex struct:

66

vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string
typeName)
{ vector<Texture> textures;

for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{

aiString str;
mat->GetTexture(type, i, &str);
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str.C_Str();
textures.push_back(texture);

}
return textures;}

Material

• First, check the amount of textures stored in the material with
GetTextureCount

• Retrieve each of the texture’s file locations with GetTexture (stores
the result in an aiString)

• Use TextureFromFile that loads a texture (with SOIL) and returns the
texture’s ID

67

Material

Note, we assume that texture files are in the same directory as the
location of the model itself (or local to the model, e.g.,

model/texture)→ concatenate the texture location string and the
directory string from the loadModel function

Some models use absolute paths for their texture locations → won’t
work on each machine

In that case you probably want to manually edit the file to use local
paths for the textures (if possible)

68

A large Optimization

• There is still a large (not completely necessary) optimization

• Most scenes re-use some textures, e.g., a house with a granite
texture for its walls, could also be applied to the floor, ceilings,
staircase, etc.

• Loading textures is not a cheap operation, currently a new texture is
loaded and generated for each mesh even if the same texture has
been loaded several times before →may be a bottleneck

69

A large Optimization

• Add one small tweak to the model code by storing all of the loaded
textures globally, before load a texture, first check if it hasn’t been
loaded already

• If so, skip the entire loading routine

• To compare textures, store their path as well:

70

struct Texture {
unsigned int id;
string type;
string path;

};

A large Optimization

• Then, store all the loaded textures in another vector declared at the
top of the model’s class file:

71

vector<Texture> textures_loaded;

A large Optimization

• In the loadMaterialTextures function, compare the texture path with
all the textures in the textures_loaded vector for similarity

• If so, skip the texture loading/generation part and use the located
texture struct as the mesh’s texture:

72

…
mat->GetTexture(type, i, &str);
bool skip = false;
for(unsigned int j = 0; j < textures_loaded.size(); j++){

if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
{

textures.push_back(textures_loaded[j]);
skip = true;
break;

}
}

if(!skip)
{ Texture texture; …
}

A large Optimization

Some versions of Assimp tend to load models quite slow when using
the debug version and/or the debug mode of your IDE so be sure to
test it out with release versions as well if you run into slow loading

times.

73

No more Containers!

• Simply run the
3.model_loading__1.model_l
oading example

74

Own Model Load Class*

75

Introduction

• Let‘s assume you are confronted with a new file format that cannot
be handled by Assimp

• This happens a lot in the field of visualization

76

Introduction

• For simplicity, we want to load an .obj mesh again

• This time, we write a loader of our own!

77

Wavefront .obj

• .obj file format is a simple that represents 3D geometry

• For our loader we need to learn about the structure of this file format

78

Wavefront .obj

• Anything after # is a comment

• A vertex can have the coordinates (x,y,z,[w])

• Texture coordinates can have the coordinates (u,[v, w])

79

this is a comment

v 1.23 3.42 -2.81
v 4.91 3.37 -3.57
v 7.67 6.91 -1.21

vt 0.50 1.13
vt 1.45 1.25
vt 0.91 2.47

Wavefront .obj

• A vertex normal has the form (x,y,z) (not necessarily unit vector)

• Face elements

80

vn 0.24 0.54 -0.34
vn 0.11 0.33 -0.33
vn 0.27 0.11 -0.91

f 1 4 2
f 1/2 5/4 2/3
f 1/2/2 3/4/3 8/5/1
f 1//1 2//3 3//9

Wavefront .obj

• The face elements uses indices used to define the face (e.g., triangle)

• Additionally, with texture coordinates

• Now, with vector normals

81

f v1 v2 v3
f 1 4 2 # a triangle with the vertice 1, 4, 2

f v1/vt1 v2/vt2 v3/vt3
f 1/2 5/4 2/3 # a triangle with the vertice 1, 5, 2 and the

texture coordinates 2, 4, 3

f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
f 1/2/2 3/4/3 8/5/1 # a triangle with the vertice 1, 3, 8 and the

texture coordinates 2, 4, 35
a normals 2, 3, 1

Wavefront .obj

• Indices with normal only

82

f v1//vn1 v2 //vn2 v3 //vn3
f 1//1 2//3 3//9 # a triangle with the vertice 1, 2, 3

and the normals 1, 3, 9

Wavefront .obj

• For our loader, we assume that we have no normals given and the
faces are in the format f v1 v2 v3

83

class Obj_Mesh

• We create a class Obj_Mesh, consisting of a header Obj_Mesh.h and
a cpp file Obj_Mesh.cpp

84

#pragma once
#include <iostream>
#include <fstream>
#include <string>
class Obj_Mesh
{
public:

Obj_Mesh();
int Load(char* filename);
void calculateNormal(float* coord1, float* coord2, float* coord3, float
normals[4]);
float* normal;
float* vertices;
unsigned int* indices;…

class Obj_Mesh

• We create a class Obj_Mesh, consisting of a header Obj_Mesh.h and
a cpp file Obj_Mesh.cpp

85

…
unsigned int TotalPointComponents;
unsigned int TotalTriangles;
}

class Obj_Mesh

• Constructor:

86

Obj_Mesh::Obj_Mesh()
{

this->TotalPointComponents = 0;
this->TotalTriangles = 0;

}

class Obj_Mesh

• We start with the load function:

87

int Obj_Mesh::Load(char* filename)
{

std::string line;
std::ifstream objFile(filename);

if (objFile.is_open())// If obj file is open, continue
{…

class Obj_Mesh

• We start with the load function:

88

objFile.seekg(0, objFile.end); // Go to the end of file
long fileSize = objFile.tellg(); // get the size of the file
objFile.seekg(0, objFile.beg); // Back to the beginning

vertices = (float*)malloc(fileSize); // Allocate memory for vertices, …
indices = (unsigned int*)malloc(fileSize * sizeof(unsigned int));
normals = (float*)malloc(fileSize * sizeof(float));

while (!objFile.eof())
{

class Obj_Mesh

• We start with the load function:

89

std::getline(objFile, line); // Get a line from file

if (line.c_str()[0] == 'v' && line.c_str()[1] == ' ') // vertex?
{
line[0] = ' '; // Set first character empty to use sscanf

sscanf_s(line.c_str(), "%f %f %f ",// Read floats and set vertices
&vertices[TotalPointComponents],
&vertices[TotalPointComponents + 1],
&vertices[TotalPointComponents + 2]);

normals[TotalPointComponents] = 0; // Set normal to 0 (important later)
normals[TotalPointComponents + 1] = 0;
normals[TotalPointComponents + 2] = 0;

TotalPointComponents += 3;// Add 3

class Obj_Mesh

• We start with the load function:

90

if (line.c_str()[0] == 'f' && line.c_str()[1] == ' ') // face?
{
line[0] = ' ';

int tmpIndices[4] = { 0, 0, 0 };
sscanf_s(line.c_str(), "%i %i %i",// f 1 2 3
&tmpIndices[0],
&tmpIndices[1],
&tmpIndices[2]);

tmpIndices[0] -= 1; // OBJ starts from 1
tmpIndices[1] -= 1;
tmpIndices[2] -= 1;

indices[3 * TotalTriangles + 0] = tmpIndices[0];
indices[3 * TotalTriangles + 1] = tmpIndices[1];
indices[3 * TotalTriangles + 2] = tmpIndices[2];
TotalTriangles += 1; }

class Obj_Mesh

• We start with the load function:

91

}
}
else
{
std::cout << "Unable to open file";
return 0;
}
objFile.close();

class Obj_Mesh

• Calculate the normal

93

for (int i = 0; i < TotalTriangles; i++)
{
int ind1 = indices[3 * i];
int ind2 = indices[3 * i + 1];
int ind3 = indices[3 * i + 2];

float coord1[3] = { vertices[3 * ind1 + 0], vertices[3 * ind1 + 1], vertices[3 * ind1 + 2] };
float coord2[3] = { vertices[3 * ind2 + 0], vertices[3 * ind2 + 1], vertices[3 * ind2 + 2] };
float coord3[3] = { vertices[3 * ind3 + 0], vertices[3 * ind3 + 1], vertices[3 * ind3 + 2] };

float norm[4];
this->calculateNormal(coord1, coord2, coord3, norm);
…

class Obj_Mesh

• We calculate the normal of the triangle first

• The normal of a vertex is determined by
adding the normal of incident triangles and
weight them with the area of the triangle

94

class Obj_Mesh

• Calculate the normal

95

void Obj_Mesh::calculateNormal(float* coord1, float* coord2, float* coord3, float normals[4])
{
float va[3], vb[3], vr[3], val;
va[0] = coord1[0] - coord2[0];
va[1] = coord1[1] - coord2[1];
va[2] = coord1[2] - coord2[2];
vb[0] = coord1[0] - coord3[0];
vb[1] = coord1[1] - coord3[1];
vb[2] = coord1[2] - coord3[2];
/* cross product */
vr[0] = va[1] * vb[2] - vb[1] * va[2];
vr[1] = vb[0] * va[2] - va[0] * vb[2];
vr[2] = va[0] * vb[1] - vb[0] * va[1];
/* normalization factor */
val = sqrt(vr[0] * vr[0] + vr[1] * vr[1] + vr[2] * vr[2]);

normals[0] = vr[0] / val;
normals[1] = vr[1] / val;
normals[2] = vr[2] / val;
normals[3] = val/2;}

class Obj_Mesh

• Calculate the normal (add and weight them)

96

this->calculateNormal(coord1, coord2, coord3, norm);

normals[3 * ind1 + 0] += norm[0] * norm[3];
normals[3 * ind1 + 1] += norm[1] * norm[3];
normals[3 * ind1 + 2] += norm[2] * norm[3];

normals[3 * ind2 + 0] += norm[0] * norm[3];
normals[3 * ind2 + 1] += norm[1] * norm[3];
normals[3 * ind2 + 2] += norm[2] * norm[3];

normals[3 * ind3 + 0] += norm[0] * norm[3];
normals[3 * ind3 + 1] += norm[1] * norm[3];
normals[3 * ind3 + 2] += norm[2] * norm[3];
}
return 1;
}

class Obj_Mesh

• Homework: Make it run

• Do not forget to add the missing
variables in the class

• Bind the buffers for the vertices,
normals, indices

97

Questions???

98

