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Figure 1: We present an interactive multi-faceted prism view, which supports data scientists in the subspace exploration of multi-variate
distributions. The user composes a low-dimensional space by incrementally choosing their own basis vectors. For each choice, multiple
options are visualized qualitatively and are supported with quantitative information regarding variance, sparsity, and visibility. From left to
right: (1) visualization of data distributions when selecting the first axis, (2) display of two-dimensional distributions, (3) three-dimensional
visualization for choosing the third dimension, and lastly (4) a detailed view in which individual data points are shown.

Abstract
In data science, visual data exploration becomes increasingly more challenging due to the continued rapid increase of data
dimensionality and data sizes. To manage complexity, two orthogonal approaches are commonly used in practice: First,
data is frequently clustered in high-dimensional space by fitting mixture models composed of normal distributions or Stu-
dent t-distributions. Second, dimensionality reduction is employed to embed high-dimensional point clouds in a two- or three-
dimensional space. Those algorithms determine the spatial arrangement in low-dimensional space without further user inter-
action. This leaves little room for a guided exploration and data analysis. In this paper, we propose a novel visualization system
for the effective exploration and construction of potential subspaces onto which mixture models can be projected. The subspaces
are spanned linearly via basis vectors, for which a vast number of basis vector combinations is theoretically imaginable. Our
system guides the user step-by-step through the selection process by letting users choose one basis vector at a time. To guide
the process, multiple choices are pre-visualized at once on a multi-faceted prism. In addition to the qualitative visualization of
the distributions, multiple quantitative metrics are calculated by which subspaces can be compared and reordered, including
variance, sparsity, and visibility. Further, a bookmarking tool lets users record and compare different basis vector combinations.
The usability of the system is evaluated by data scientists and is tested on several high-dimensional data sets.

1. Introduction

The effective analysis of high-dimensional abstract data is a long-
standing challenge across many application domains [Kaw08,
SSB09,LHPW16,DDH∗25]. In general, high-dimensional abstract
data can be considered a high-dimensional point cloud, where the

particular distribution of the high-dimensional points is of great in-
terest in inferring the semantics and structures in the data. Concep-
tually, such data can be represented in tabular form, and hence the
complexity of such a data set can be measured by two numbers:
the total number of points/items (number of rows), and the num-

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0003-5675-8144
https://orcid.org/0000-0002-3020-0930
https://orcid.org/0000-0002-1511-4022


2 of 12 B. Zahoransky, T. Günther and K. Lawonn / PrismBreak: Exploration of Multi-Dimensional Mixture Models

ber of dimensions/attributes in which the points live (number of
columns) [Mun14a]. To reduce the number of data points, experts
aggregate points into clusters. The point distribution inside a clus-
ter can then be summarized with few parameters by fitting one or
multiple suitable distributions to the points, such as normal distri-
butions or Student t-distributions. A model-based analysis then fo-
cuses on the arrangement and shape of clusters, while a data-based
analysis concentrates on the properties of individual data points and
their cluster memberships.

We design a visualization system that supports users in the explo-
ration of different subspaces onto which high-dimensional distribu-
tions can be projected. These subspaces are spanned by up to three
orthonormal basis vectors. Previous work [LME∗23] proposed a
first ray tracing system that visualized high-dimensional normal
distributions for given subspaces. In their work, the subspace was
formulated as a linear combination of basis vectors, which were
weighted using sliders. We expand their work by designing a sys-
tem that guides the user through the selection process of different
basis vectors, which are added incrementally. Each choice of ba-
sis vector is supported by displaying multiple possible subspaces
on a multi-faceted prism. Thereby, a number of model-based and
data-based analysis tasks are supported. For example, in addition
to qualitative visualizations of the resulting distributions, we de-
rive quantitative metrics, including variance, sparsity, and visibil-
ity, by which the subspaces can be compared and arranged. Fur-
ther, bookmarks enable customized comparisons. The ray-tracing-
based rendering of the distributions is GPU-accelerated. Since the
choice of distribution is data- and application-dependent, our sys-
tem generalizes to different types of distribution functions. Thus,
in addition to normal distributions [LME∗23], we also support Stu-
dent t-distributions, which were requested by our users. Our tool is
designed and evaluated with data science practitioners on several
high-dimensional data sets. In summary, we contribute:

• a multi-faceted prism view that enables users to compose and
compare different subspaces for dimensionality reduction,

• a set of metrics by which the subspace projections are compared,
namely variance, sparsity, and visibility,

• closed-form expressions for rendering Student t-distributions,
• a user study with domain scientists,
• a novel system that is available as an open-source project [ZGL].

2. Related Work

In the following, we summarize work on multi-dimensional visu-
alization, linear coordinate representations, exploration and inter-
action, and dimensionality reduction. For comprehensive entries
into visualizations tailored for high-dimensional data, we refer to
Liu et al. [LMW∗17]. They delineated the visualization of mul-
tidimensional data into three key phases. In the data transforma-
tion phase, information gets reduced via topological data analy-
sis [WSPVJ11], projections [PEP∗11], and clustering [LT15]. The
second phase is the visual mapping, in which multiple attributes
are mapped to specific spatial axis arrangements [LT13, CvW11],
they may also be mapped to glyphs [War08], or they are explored
by animations [EDF08] and hierarchical views [OHJ∗11]. The view
transformation is the final phase, which aims to reduce visual clut-

ter [AdOL04] or supports the viewer with additional shading ef-
fects [SW09, MG13].

Seo and Shneiderman [SS04] introduced a rank-by-feature
framework to aid users in identifying pertinent dimensions for fur-
ther exploration through scatterplots. Sips et al. [SNLH09] devel-
oped the notion of class consistency to enhance the exploration pro-
cess. Furthermore, Tatu et al. [TAE∗09] demonstrated automatic
analysis for uncovering structures within high-dimensional data,
thus providing users with recommendations for additional explo-
ration. Complementing these efforts, Bertini et al. [BTK11] offered
a comprehensive review of quality metrics to facilitate the naviga-
tion and exploration of complex datasets.

Next, we provide an overview of dimensionality reduction meth-
ods. Among the most popular choices for non-linear dimensional-
ity reduction is the t-distributed Stochastic Neighborhood Embed-
ding (t-SNE) [VdMH08]. To preserve neighborhoods in the high-
dimensional space, normal distributions are fitted to the data in the
high-dimensional space, which are then mapped to t-distributions
in the lower-dimensional space which utilizes their heavier tails to
fit in the larger region of the high-dimensional space. The similarity
between the distributions is measured by the Kullback-Leibler (KL)
divergence, and the variance of the distributions is chosen that each
distribution has a user-chosen perplexity, analogous to a neighbor-
hood size parameter. The algorithm produces clusters in the re-
sulting scatter plot depending on the chosen perplexity [WVJ16].
With efficient GPU implementations, t-SNE has been optimized
for high performance [CRHC18,PTM∗20], and has now found nu-
merous applications, such as in cell biology [GHS∗19]. The Uni-
form Manifold Approximation and Projection (UMAP) [MHM18]
is another popular approach that has found widespread applica-
tion [BMH∗19]. Like t-SNE, UMAP projects high-dimensional
data to lower dimensions by estimating the underlying manifold
structure while aiming to preserve both local and global structures.
The Local Affine Multidimensional Projection (LAMP) [JCC∗11]
utilizes a subset of samples, so-called control points, and their po-
sitions in the visual space. These control points, which can be in-
teractively rearranged, are used to construct a family of orthogonal
affine mappings, assigning one mapping to each point. Principal
Component Analysis (PCA) [Hot33] is a statistical dimensionality
reduction method that determines a set of orthogonal basis vectors,
which can be sorted in descending order by the amount of data
variance they capture. The basis vectors arise as eigenvectors of the
covariance matrix of the centered data points. Eigenvalues indicate
variance along eigenvectors, helping assess information loss when
dropped. Discarding eigenvectors with low corresponding eigen-
value enables a lower-order approximation while preserving maxi-
mum information.

3. Visualization Design

The visualization system that we propose in this paper is developed
in close collaboration with domain scientists, namely visualiza-
tion experts, machine learning researchers, and statisticians. In their
daily work, they frequently explore and analyze high-dimensional
data statistically; that is, they fit distributions and investigate their
properties. Before we proceed formulating concrete analysis tasks,
we need to answer two fundamental design questions.
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3.1. Design Questions

Which Distributions Should Be Considered? To cluster data
points, the experts we worked with use mixture models based on
two distributions.

First, the k-dimensional normal distribution is parametrized by
a mean vector µ ∈ Rk and a positive-definite covariance matrix
Σ ∈ Rk×k. Its probability density function is called Gaussian and
is defined as

g(x) = 1√
(2π)k det(Σ)

exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
.

Gaussians are commonly used to approximate data due to their
favorable mathematical properties, such as symmetry, differentia-
bility, and controllable compact support.

Second, the Student t-distribution is a parametric distribution
that, for specific shape parameter choices ν ∈ R>0, includes the
standard normal distribution (ν →∞). With the mean µ ∈ Rk and
the positive-definite scale matrix Σ ∈Rk×k, its density is defined as

t(x) =
Γ

(
ν+k

2

)
Γ
(

ν

2
)√

(νπ)k det(Σ)

(
1+

1
ν
(x−µ)T

Σ
−1(x−µ)

)− v+k
2

.

Γ(z) =
∫∞

0 tz−1e−tdt represents the gamma function. In this paper,
we refer to t(x) as t-density.

The probability density function of a multi-variate mixture
model is a linear combination of n ∈ N density functions, which
are weighted by corresponding weights φi ∈ R:

p(x) =
n

∑
i=1

φi · fi(x). (1)

The component density functions fi(x) are all treated as a Gaus-
sian g(x) or as a t-density t(x) and are defined by their own pa-
rameters µi,Σi and optionally νi. The visual analysis of mixture
models is complex since new modes are created from superposi-
tions [LME∗23, GLP∗24]. For k > 3, the multi-variate distribu-
tions (and, as a consequence, their mixture models) are too high-
dimensional to visualize directly.

Which Projection Method Is Suitable? The critical challenge
that we address in this paper is the much-needed scalability of
mixture model analyses concerning many dimensions. The objects
studied by our domain scientists are distributions, which pose a
hard constraint on any projection method: The continuity of the
density function must be retained after projection; in other words,
a Gaussian in high-dimensional space should look like a Gaus-
sian after projection, as shown in Fig. 2. Non-linear dimension-
ality reduction methods, such as t-SNE and UMAP, are not appli-
cable since they are prone to break connected regions into multi-
ple pieces [BGG20]. LAMP preserves the global structure better.
However, t-SNE, UMAP and LAMP are designed to reduce the
dimensionality of point clouds. They are not well suited to ren-
der density functions, since it would be computationally expensive
to determine the projection at each pixel based on the surround-
ing points. Instead, we need a unique global projection. Thus, we
decided to use linear projections, not only because they retain con-
tinuity of functions and are scalable in terms of compute time, but

high-dim. PCA LAMP UMAP t-SNE

Figure 2: Top: Uniformly distributed points on a manifold in R3,
bottom: points follow two normal distributions in R3. Unlike PCA
and LAMP, UMAP and t-SNE tend to fragment continuous regions
(top) and do not retain the point distributions’ shape (bottom).

also because there is a higher chance for interpretability since ev-
ery point is formed from a linear combination of the original at-
tributes. Since the term of interpretability has proven to be am-
biguous [Par22, ZBLB24], we want to clarify that we aim to pro-
vide interpretability for the subsequent data exploration task, i.e.,
our approach is designed to help users understand how certain at-
tributes contribute to the projection. However, finding a suitable
linear basis and interpreting it is challenging.

3.2. Problem Statement

Formal Setup. In the following, we refer to a high-dimensional
data point as x ∈ Rk, where k is the dimensionality of the high-
dimensional space. Since human visual perception is restricted
to three spatial dimensions, we aim to find a linear projec-
tion that maps a point x to a three-dimensional coordinate p =
(p1, p2, p3)

T ∈ R3. The three-dimensional space is spanned by
three orthonormal basis vectors b1, b2, b3 in Rk. Similar to La-
wonn et al. [LME∗23], we introduce a linear transformation matrix
by stacking the basis vectors column-wise into a matrix B ∈ Rk×3:

B = (b1,b2,b3). (2)

The point p is lifted by matrix multiplication into the high-
dimensional space, i.e., x = Bp. We refer to this as projecting up.
Conversely, a high-dimensional point can be projected onto the
three orthonormal basis vectors, which is likewise written as matrix
multiplication p = BTx. We refer to this as projecting down. Pro-
jecting up and back down leads to the same place where we started:
p=BTBp. The reverse is not necessarily the case: x ̸=BBTx. Like-
wise, entire density functions can be projected up and down, which
we explain at the example of Student t-distributions. Given a three-
dimensional point p, we can project this point up into the high-
dimensional space and sample the density function f (x):

f (Bp) =
Γ

(
v+k

2

)
Γ
( v

2
)√

(νπ)k det(Σ)(
1+

1
ν
(Bp−µ)T

Σ
−1(Bp−µ)

)− ν+k
2

.

(3)

This approach is computationally more costly, but has the advan-
tage that separate structures in high-dimensional space remain sep-
arable. With this approach we only see a small subspace of a density
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Figure 3: Lawonn et al. [LME∗23] projected points down and sam-
pled distributions in high-dimensional space (left). We also allow
projecting distributions down to low-dimensional space (right).

function. Alternatively, we may project the mean µ̂ = BTµ and the
covariance matrix Σ̂ = BT

ΣB down. This gives rise to a density
function f̂ (p) in three dimensions:

f̂ (p) =
Γ

(
ν+k

2

)
Γ
(

ν

2
)√

(νπ)k det(BTΣB)(
1+

1
ν
(p−BTµ)T(BT

ΣB)−1(p−BTµ)
)− ν+k

2

.

(4)

This formulation is computationally cheaper, but structures that
are separable in high-dimensional space may be projected onto the
same location in three dimensions. By default, we use this option.

Rendering of Distributions. To render Gaussians efficiently, La-
wonn et al. [LME∗23] derived closed-form expressions for ray inte-
grals and maximum intensity projections using an upwards projec-
tion similar to Eq. (3). Analogously, we derive closed-form expres-
sions for projecting t-densities up and projecting both Gaussians
and t-densities down. Fig. 3 shows a t-distribution mixture model
fitted to a nine-dimensional dataset and rendered with a maximum
intensity projection. The results differ marginally, so we let the user
decide on a mode of projection. The rendering is described in Sec-
tion 4.6 and is based on the calculation of integrals and extremal
points along ray segments.

3.3. Requirement Analysis

The central problem that is solved by our interactive visualization
system is to guide the user in making an informed choice for the
three orthonormal basis vectors b1, b2, b3 in Eq. (2). Since many
possible basis vector combinations exist, we follow an incremen-
tal construction in which the user adds one basis vector at a time.
The following tasks have been identified in collaboration with the
domain scientists during contextual inquiries [WHK90].

Model-based Tasks are concerned with comparing individual dis-
tributions within a certain mixture model. The effective comparison
requires a suitable choice of basis vectors.
T1 Basis Vector Pool. The system should offer a pool of reason-
able basis vectors to start the exploration from. Common choices
are the canonical axes (each attribute is its own axis), or principal
components of the entire data set or individual distributions.
T2 Qualitative Comparison. To judge how adding a basis vector
impacts the separability of distributions into clusters, it is essential
to visually convey how the distributions will be arranged spatially
once the next basis vector is added. This will allow for easy identi-
fication of interesting arrangements, such as outliers.

T3 Quantitative Comparison. Even within a group of basis vec-
tors, such as the canonical basis vectors, there are potentially many
possible basis vectors to choose from. To reorder and organize
them, quantitative metrics are needed to judge the utility of a poten-
tial basis vector. Of particular interest are the variance captured by
the basis vector, the sparseness in terms of non-zero vector entries,
and the amount of occlusion caused by overlapping distributions.
T4 Vector Attribution. Basis vectors in a high-dimensional space
are generally challenging to interpret semantically. It would be
helpful to convey what the weight of a basis vector means in terms
of the underlying attributes.

Data-based Tasks. Since a distribution is a visual representation
of a group of points, it is essential to convey information about the
points themselves to judge how well the distribution represents the
actual data.
T5 Cluster Membership. The probability density function of each
distribution indicates how likely a point at a given location is to be
part of the corresponding cluster. This is referred to as fuzzy clus-
tering. For some data points, multiple distributions might overlap,
making the cluster membership less certain. It will be essential to
see which cluster(s) a data point belongs to.
T6 Model Fit. The density functions inside a mixture model are
an approximate stand-in for a group of data points. A model-based
analysis is potentially misleading if the model does not represent
the data well. Thus, it is necessary to see the individual data points
relative to the density function to judge if the symmetry and shape
assumptions of the distribution are valid for the data.
T7 Outlier Detection. When analyzing data points, detecting out-
liers is often critical since it allows the user to judge when and
where the assumed distribution is not a good fit for the data. What
constitutes an outlier depends on the analysis task. For example, a
point may be considered an outlier either if it is far from the mean
of its cluster or if it has an equal probability of belonging to multi-
ple clusters.

4. Visualization System

In the following, we explain the components of our interactive vi-
sualization system, which are shown in Fig. 1. The input to our al-
gorithm is a mixture model as in Eq. (1) with given distribution pa-
rameters. If the user provides points only, we use existing software
to fit a multi-variate mixture model [AWBM18]. Further Impemen-
tation Details can be found in the supplemental material. Our users
incrementally choose the basis vector b1, b2, and b3. Even for two
basis vectors, presenting all possible combinations may already be
infeasible. Instead, to let the user build a mental model during the
selection process, we introduce the prism view, which applies con-
sistent interaction metaphors throughout the incremental construc-
tion process. Each basis vector choice is supported by comparing
different options with visualizations appropriately chosen for the
given dimensionality of the already selected subspace.

4.1. Prism View

The starting point of the exploration is to choose the first basis vec-
tor. As mentioned in T1, we need a pool of potential basis vectors
to start from. We chose to compose a pool from three sets of basis
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(A) (B)

(C)

(A) (B)

(C)

(D)

Canonical Tile Bookmarked PCA Tile

Figure 4: Above, we see two tiles of the first stage. The tiles show
three t-distributions. There are four UI elements: (A) the attribution
glyph conveys the combination of canonical basis vectors (i.e., data
attributes), (B) depiction of three metrics: variance, sparsity and
visibility, (C) a unique label, and (D) a custom bookmark.

vectors, which the users frequently use:

Canonical basis vectors. Each attribute of the high-dimensional
data set forms its own basis vector. This means that the number of
canonical basis vectors scales linearly with the dimensionality of
the data set. These basis vectors have the highest interpretability
since each has a semantic meaning.
Global PCA basis vectors. A model-free basis is formed by com-
puting a PCA across all data set points. The vectors can be ordered
naturally by the variance carried by the eigenvectors. The number
of information-carrying basis vectors is data-dependent, but in the
worst case, it is also linear in the number of dimensions.
Per-distribution PCA basis vectors. Further, we compute a PCA
based on the covariance matrix of every single distribution of the
mixture model provided by the user. This way, other distributions
can be viewed ’from the perspective’ of one given distribution.
Thus, the number of these basis vectors additionally scales linearly
in the number of distributions in the mixture model.

If there are n distributions in the mixture model, the three kinds
of basis vectors above naturally lead to n+ 2 groups of possible
basis vectors: one group contains all canonical basis vectors, one
group includes the global PCA basis vectors, and lastly, one group
of PCA basis vectors for every distribution in the mixture model.
This means a scalable visual encoding is needed to explore a vari-
able number of groups and basis vectors within each group. For
this reason, we designed the prism view. The prism view is a multi-
faceted prism that can be infinitely rotated horizontally. It always
shows three facets at a time but can scroll through an arbitrary num-
ber of facets. Each of the groups above is assigned to one facet.

4.2. Tiles

Each facet has one tile for every basis vector that can be selected.
To enable the qualitative comparison in T2, the visual encoding is
adjusted to the number of basis vectors that have already been cho-
sen. If no basis vector has been chosen, then a data histogram is
shown for every potential basis vector. The histogram displays the
distributions as shown in Fig. 4, allowing us to spot basis vectors
for which two or more distributions are already separable. Each dis-
tribution is assigned a unique color, used from the iWantHue web-

site [Mat14]. When the basis vector b1 has been selected, then the
prism view transitions to the next stage, in which each tile displays
a two-dimensional visualization of the distributions in the space
spanned by b1 and another basis vector that can be chosen next.
If the second basis vector b2 is chosen, we enter the third stage,
in which three-dimensional distributions are shown for the space
spanned by b1, b2, and the next possible basis vector. After select-
ing b3, a detailed view is shown, in which the data points can be
explored. Throughout the selection process, the user can customize
the color or hide distributions, enable (default) or disable scaling
by weight φi (relative scaling), scale distributions, and clip distri-
butions if their density value falls below a user-defined threshold;
by default, two standard deviations of each distribution are shown.
Each tile has a unique label, as shown in Fig. 4 C. Alongside the
two shown options, a first stage label for the per-distribution PCA is
composed of an axis, model indicator and distribution number, and
basis vector number. An example is x-G01-02 for the second princi-
pal component of the first Gaussian distribution. For t-distributions
the G in x-G01-02 is replaced by T. Every stage extends the label
by a further line of the described format.

4.3. Metrics

In the following, let X ∈ RN×k be the centered data matrix con-
taining all N points in k dimensions. Further, let Σ be the global
covariance matrix, which is symmetric and positive semi-definite:

Σ =
1

N −1
XTX,

with eigenvalues λi ≥ 0, orthonormal eigenvectors vi, and 1≤ i≤ k.

Variance ( ). The first metric measures the total variance captured
by a basis vector. Vectors with higher variance are preferable since
there is a higher chance that the distributions will remain distin-
guishable. Our basis vector options included canonical basis vec-
tors and PCA basis vectors, i.e., there are two cases:

svariance(b) =


λi

max({λ j}k
j=1)

b = vi

σ
2
i

max({σ2
j}k

j=1)
b = ci.

If b is a PCA basis vector vi, then the variance is expressed by the
eigenvalue λi of the corresponding eigenvector. If b is a canonical
basis vector ci, then the variance is the i-th diagonal element σ

2
i of

Σ. In both cases, the value range is normalized to [0,1] by dividing
by the largest value.
Sparsity ( ). The sparsity metric relates to the interpretability of
a basis vector. If a basis vector is a canonical basis vector, it cor-
responds to a data attribute. If the basis vector is formed as a lin-
ear combination of two canonical basis vectors, then it is a lin-
ear combination of two data attributes. A basis vector becomes
more interpretable if formed from fewer canonical basis vectors.
To account for how far away the values are from zero, we apply a
monotonic transfer function to each basis vector component bi in
b = (b1, . . . ,bk)

T and sum up the result:

ssparsity(b) =
k

∑
i=1

b4
i .

The exponent assigns a higher penalty to values far from one. Note,
that an exponent of two would always result in a score of one since
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b is normalized. With an exponent of four, canonical basis vectors
achieve a score of one; others obtain a lower score.
Visibility ( ). In Fig. 4, we display two tiles from the first stage.
In each tile, the x-axis represents the domain of the mixture model,
while the y-axis indicates its density. To evaluate visibility, we fo-
cus on a single row from each tile, where each pixel l corresponds
to a specific x-value. At this x-value, we compute the density pil
for each distribution i. This process enables us to construct a ma-
trix M(b) ∈ Rn×n that captures the correlation between the distri-
butions, where n is the number of distributions:

Mi j = ∑
l

pil · p jl .

Based on M we introduce svisibility(b) ∈ (0,1) for each tile:

svisibility(b) =
1
n

n

∑
i=1

exp(Mii)

∑
k
j=1 exp(Mi j)

. (5)

Note that each summand is the softmax function relating the visi-
ble part of a distribution to the part covered by other distributions.
Thus, overlapping regions and poor visibility of distributions lower
svisibility(b), while less overlap and high visibility of the distribu-
tions increase the value. This is also evident in Fig. 4. Notably, in
the PCA Tile, visibility appears to reach its maximum. The Mii
values significantly surpass all Mi j for i ̸= j, causing nearly all
summands in Eq. (5) to approach one, leading the weighted sum to
do the same. To calculate the visibility for stage two and three, we
only modify pil . In the second stage, the domain of the distribution
is two-dimensional. Consequently, we evaluate visibility using all
pixels of the tile. Each pixel l corresponds to a two-dimensional
position in the domain, and is used to compute the density values
pil for each distribution i. For the third stage, we cast a ray through
every pixel l of the tile. In this stage, pil represents the maximum
density value encountered along the ray for each distribution i, anal-
ogous to the maximum intensity projection, see Section 4.6.

The three metrics above allow for quantitative comparisons of
tiles, each corresponding to a certain basis vector choice. We ex-
press the metrics by a bar chart in the lower right corner. We chose a
bar chart since it expresses quantitative values on an aligned scale,
which ranks highest in effectiveness among all magnitude chan-
nels [Mun14a]. With this, the user can easily judge which metrics
are most prominent. To maintain consistency, and given that the
variance scores are not comparable between tiles of different facets,
tiles can be reordered within a facet, but not globally.

4.4. Bookmarks

By grouping the different basis vectors into facets, the facet view
supports only the comparison of basis vector choices within the
same group, i.e., on the same facet. To allow the user to compare
basis vector choices from different groups, we implemented book-
marks, shown in Fig. 5. Supporting task T2, marked tiles are pinned
on the right-hand side of the screen. The camera rotates smoothly
to a selected tile upon clicking on its bookmark.

4.5. Attribution Glyph

Attribution proved useful for interpretability [BTB13, CMN∗16].
To increase the interpretability of the basis vectors, which is in sup-

Prism View with Bookmarked Tiles Pinned Tiles

Figure 5: Bookmarks (red ribbons) can be added to the tiles, which
adds those tiles on the right-hand side to a list of pinned tiles. This
way, tiles of different facets can be compared.

MIP View Hull View DVR View

Figure 6: The detail view offers the three visualization techniques
of [LME∗23]. The MIP view conveys cluster memberships, the hull
view conveys the spatial arrangement, and the DVR view helps dis-
cover new modes arising from superpositions of distributions.

port of T4, we insert an attribution glyph in the lower left corner of
each tile. See Fig. 4 (A) for a depiction of the attribution glyph.
For example, consider a basis vector b = (

√
0.5,

√
0.5,0, . . . ,0)T,

which is non-zero in only its first two coefficients. This vector
can be expressed as a linear combination of the canonical ba-
sis vectors c1 = (1,0, . . . ,0)T and c2 = (0,1,0, . . . ,0)T, i.e., b =√

0.5c1 +
√

0.5c2. Each canonical basis vector corresponds di-
rectly to one attribute of the data set. For a k-dimensional basis
vector, we have k quantitative values to encode if the full attribu-
tion should be displayed. Several design choices are imaginable.
We decided against pie charts due to the poor angle perception.
Another option is the polar area chart, which is less precise when
values become too small. We decided to use flower glyphs since
only one item is shown in the plot at a time and those are a suitable
alternative to star glyphs [vOVR22]. A flower glyph uses a radial
layout for the k values. It expresses each quantitative value in terms
of the size of a teardrop shape and its spatial position along the
radial axis. Since eigenvectors are normalized, the value range is
[−1,1], and we display the absolute value, whose range is [0,1].
The glyph’s segments are arranged clockwise, starting at the 12
o’clock position. The order is given by the user, e.g., an alphabet-
ical arrangement helps locating an attribute by name. An ordered
list of all names appears when hovering over the glyph, as shown
in the supplemental material. The attribute name of the currently
hovered glyph segment is highlighted.

© 2025 The Author(s).
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4.6. Detail View

Once all three basis vectors are chosen, the prism view transitions
to the detail view. Analogous to [LME∗23], we derive three views
for Student t-distributions, see Fig. 6. All three detail views are em-
bedded in 3D space. While it is conceptually imaginable to render
or approximate the views differently, for example by rasterizing
ellipse proxies, we follow [LME∗23] and apply a ray tracing for-
mulation for the image synthesis, since two views define the scene
implicitly and the third view uses a view ray integral.

1. Maximum Intensity Projection (MIP). From all distributions,
a maximum intensity projection locates the largest value along a
view ray p0 + τ · r, starting at p0 and traveling in unit direction r.
While this approach loses depth perception, it conveys the cluster
membership of the point along the ray with the highest certainty.
Upon variation of the travel distance τ along the ray, we determine
analytically where the maximum is reached by requesting that the
first derivative vanishes and then solving for τ:

d
dτ

f̂ (p0 + τr) = 0.

The supplemental material contains a closed-form solution that de-
termines the depth of the maximum analytically without the need
for a numerical sampling along the view ray.
2. Hull View. The hull view displays nested isocontours, which are
used to convey the three-dimensional arrangement of the distribu-
tions. Isocontours with isovalue h are defined implicitly:

f̂ (p0 + τr) = h.

The supplemental material shows a quadratic closed-form solution
for τ.
3. Direct Volume Rendering (DVR). Visualizing ray integrals
over all distributions reveals new extrema that arise due to super-
positions of distributions. For a distribution, the ray integral is∫ ∞

−∞
f̂ (p0 + τr) dτ,

which we integrate numerically via a Riemannian sum from near to
far plane. The resulting scalar value is color-coded per pixel using
the Viridis color map. In addition, isocontours are added.

In the detail view, the individual data points can be overlaid, as
shown later in Figs. 9 and 12. The user has two options for the
point encoding. The first encoding visualizes the cluster member-
ship for T5. A pie chart encodes the probabilities of belonging to
a particular cluster, as proposed by [LME∗23]. Second, the points
are colored according to the most likely cluster. Every point with a
Mahalanobis distance to its mean greater than 2 gets a black halo,
supporting T7. The halo thickness starts at 12.5 % and reaches up to
50 % of the radius when the distance exceeds 8. For both encodings,
a range filter can be applied to discard points by maximum cluster
membership or Mahalanobis distance, respectively. Both encodings
and the range filter contribute to the verification of the model fit T6.

5. Exploration Workflow

Using Kaggle’s country data set [Kok], we exemplify how a
user would typically approach a data set exploration. The nine-
dimensional data set includes 167 countries and has been clus-
tered with a t-distribution mixture model. All natural axis have

Figure 7: Exploration entry point. Here, we see the three canonical
basis vectors with the most variance in the purple distribution.

First Stage Second Stage Third Stage

Figure 8: The guided exploration takes the user from the first to the
second, and finally to the third stage, adding one basis vector with
each step. Note that in the third step, the attribution glyph shows
that the third basis vector is composed of many more canonical
basis vectors than the basis vectors chosen in the other two stages.

been scaled to a variance of one before clustering, as indicated by
the blue bar in Fig. 7. The figure shows the three canonical basis
vectors with the highest variance in the purple distribution. At this
point, we could decide to choose these three basis vectors one af-
ter another and explore them further. This would result in an easily
interpretable space since the canonical basis vectors have a direct
semantic meaning. However, another option is choosing basis vec-
tors from the per-distribution PCA of the purple cluster. This op-
tion provides the best information gain if the basis vectors with the
most variance are chosen in each stage. The bar charts and the sort-
ing function help to find these basis vectors. Here, we would expect
that the three canonical basis vectors ’exports’, ’health’, and ’im-
ports’ are well represented during the selection process, which is
confirmed by Fig. 8. The first chosen basis vector consists mainly
of the canonical basis vectors ’imports’ and ’exports’ as shown by
the attribution glyph. In the second stage, the attribution glyph re-
veals that the canonical basis vector ’health’ is highly present. In
the third stage, many more canonical basis vectors are present. As
a result, the sparsity metric drops to approximately half the value
of the previous two stages. In the detail view, we can filter points
according to their distance to the cluster mean, as shown in Fig 9.
On the right-hand side, we see a purple point near its cluster mean,
which is the Bahamas. The black halo marks it as an outlier.

As a second example, we examine the Shanghai ranking
2024 [Sha], which evaluates 1000 universities. The final score is the
weighted sum over six categories which have been scaled to a vari-
ance of one before been clustered with a Gaussian Mixture Model.
Examining the facet of the canonical basis vectors gives us first in-
sights, see Fig 10. The order of the clusters is mostly consistent,
which can be interpreted as follows: high-ranked universities per-
form well in all categories, while low-ranked universities perform
less well overall. Distributions with a lower mean tend to represent
more universities and have lower variance. Furthermore, the blue,
yellow, and orange clusters have low means and barely any vari-
ance in alumni and staff awards. Interestingly, the orange distribu-
tion performs within the remaining scores much better. Especially
in terms of publications, it is on par with the high-performing pur-
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Hulls with all Points Hulls with Outliers only

Figure 9: To detect outliers the filter distance to the mean is set to
eight standard deviations or higher. The arrow marks the Bahamas,
which are in the three-dimensional space close to its cluster mean.

Figure 10: The Alumni Awards show a low score and variance
for the universities of the yellow, orange and blue cluster. The Na-
ture and Science publications exhibit a clear ranking of the clusters.
However, in overall Publications the universities of the orange clus-
ter are en par with the top universities of the purple cluster.

ple distribution. The first PCA tile reveals that all canonical basis
vectors are relevant to obtain high variance within the data set. The
per-distribution PCA facets show that every cluster has the high-
est variance in another canonical basis vector. To find a first basis
vector, experts look for interpretable tiles in which the distributions
are separable. To select a tile with high interpretability, we first con-
sider the canonical basis vectors. Ordering the tiles according to the
visibility metric helps us with this task. The "Nature and Science
Paper" tile separates the distributions best. As the second basis vec-
tor, we choose the second PCA axis since it has the highest visibil-
ity on its facet and separates the distributions well. Some tiles of the
second stage let us anticipate the gap between the high-performing
universities represented by the purple distribution and the remain-
ing universities. In the third stage the first PCA basis vector gives
good visibility and is therefore chosen. The detail view allows us to
further investigate the orange cluster. The orange distribution rep-
resents mainly Asian universities. One possible explanation is that
Asia and its universities have developed rapidly in recent decades.
Therefore, they had less time to win awards compared to their Euro-
pean and North American counterparts. In Fig. 11, we can observe
the high distance between Harvard University and the other univer-
sities. Encoding the distribution probability allows the discovery
of points located between two or more distributions. As Fig. 12
shows, seven universities are located between the blue and yellow
distribution, and the gray and the red distribution. Only two points
lie between the orange and the gray distribution, and the orange and
the yellow distribution.

A third data set is investigated in the supplemental material, con-
taining average ratings from 980 tripadvisor.com users [RSJ18].

Figure 11: The detail view shows a large distance between the pur-
ple cluster of the top universities and the remaining universities.
Further, it shows a significant gap between Harvard, marked by
the arrow, and the remaining top universities.

Figure 12: Here, only data points with a maximum cluster prob-
ability less than 55 % are shown. Most edge cases can be found
between the gray and the red, or the yellow and blue clusters.

6. Evaluation

We evaluated our tool with the domain scientists who participated
in the contextual inquiries (Section 3.3) to verify our approach.
They regarded this tool as a novel contribution, as the study in the
supplemental material shows. Additionally, we conducted a task-
based evaluation, a questionnaire, and performance measurements.

6.1. Quantitative Task-based Evaluation

To assess the effectiveness of our proposed framework, we con-
ducted an expert study with five experts, who were not involved in
the development process of the tool. The experts have between two
and seven years of experience in mixture models, machine learn-
ing, visualization, and/or human-computer interaction. The tasks
were tailored to the requirements listed in the Requirement Anal-
ysis (Section 3.3). First, participants received files containing five
clusters of dimension twelve (five weights, means, and covariance
matrices). The model-based tasks included:

1 For cluster no. 1, find the three axes with the highest variance.
2 Based on cluster no. 2, which natural axes make up the axis with

the largest variance?
3 Create three 1D figures in which cluster no. 3 and no. 4 are sep-

arated well.
4 Starting from cluster no. 5, find three canonical basis vectors so

that the variance is large.

For the data-specific tasks, we shared five clusters of dimension
twelve and 100 points within each cluster. The tasks were:

5 Find five data points that have a maximum probability of cluster
membership of 80%.

© 2025 The Author(s).
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6 Look at the clusters and the underlying data points. For which
cluster do you think the data points do not follow a normal dis-
tribution?

7 Find the points that are at least 7 standard deviations away from
the center of each cluster.

The above tasks included taking screenshots and explaining what
they did to answer the questions.

First, the experts read the tasks, and we provided further expla-
nations when necessary. Afterward, we introduced our tool using
the country dataset and allowed them time for independent explo-
ration. Then, the quantitative study for the tool began. The experts
solved the tasks one by one, initiating and stopping the timer at
their discretion. They required between 3:30 and 7:49 minutes to
complete all tasks correctly using our framework. The maximum
time recorded for a single task was 2:36 minutes. The second part
of the study was conducted on the same day in the experts’ typical
work environments via an online meeting. At the beginning of the
meeting, we sent them the tasks and dataset. All tools were per-
mitted for solving the tasks, and all experts chose to use Python.
We provided a Python function to read the data into numpy arrays
to streamline the process. The experts familiarized themselves with
the dataset, examining its structure (e.g., shape and storage format),
and asked questions as needed. Subsequently, they solved the tasks
one by one, starting and stopping the timer themselves. They were
encouraged to first solve the tasks analytically, followed by a sec-
ond iteration to address the visual tasks. The fastest expert com-
pleted all analytical tasks within 20:24 minutes and took an addi-
tional 28:01 minutes to solve two of the visual tasks (1 and 6). The
expert who took the longest to solve the analytical tasks correctly
required 49:37 minutes, but did not attempt any visual tasks. Over-
all, the experts required between 47:31 and 51:44 minutes to solve
the tasks using their tools. On average, they took eight times longer
to complete the tasks compared to using our framework. Addition-
ally, the experts were able to create only two or fewer figures to
verify their results visually when working with their tools. After
the study, we asked the experts for their impressions. They high-
lighted three major benefits:

• the ability to gain a comprehensive overview of basis vectors,
• significant time savings achieved by using the framework, and
• a steep learning curve, enabling them to independently solve all

tasks after only 20 minutes of introduction.

Exact time measurements and selected figures created by the ex-
perts are provided in the supplemental material.

6.2. Questionnaire

For our quantitative study, we used a questionnaire to assess the ef-
fectiveness of our framework. The original questions are included
in the supplemental material. A total of 20 people participated in
the study. According to their responses, 14 were male and six were
female, and their ages ranged from 25 to 40. When asked which
disciplines the participants were familiar with, multiple answers
were possible: 17 said they were familiar with ML, 19 with Vis,
and 16 with HCI. Six participants had one to ten years of experi-
ence, nine between ten and 19, and five between 19 and 28, with
an average of 9.5 and a median of eight years of experience. We

Figure 13: Summary of the study results. Here, the individual re-
sponses of the experts (left) and non-experts (right) are shown for
each question. Blue shades correspond to affirmative answers.

used a series of questions, each rated on a five-point Likert scale
ranging from one (strongly disagree) to five (strongly agree). Ad-
ditionally, participants could provide optional free-text feedback.
A summary is presented in Fig. 13. The questionnaire began with
questions about the first stage of the prism. Most participants (90%)
strongly agreed that the prism effectively highlights facets worth
exploring (e.g., canonical basis, PCA). They confirmed that the
overview of basis vector choices helps identify an interesting ini-
tial basis vector for mixture models and clarifies where the prob-
ability of a specific distribution is highest. One participant noted,
“It is easy to find a basis vector that separates the clusters well.”
For the second stage, participants agreed that the selection of a
second basis vector facilitated well-separated distributions and that
similar projections were easy to identify. For the third stage, par-
ticipants responded positively, stating that the building metaphor
effectively conveys a three-dimensional impression of multivariate
distributions. In the fourth stage, where mixture models and data
points are displayed together, participants were asked if the visual-
ization helps confirm the fit between distributions and data points
and identify outliers. While responses to the first question ranged
from neutral to positive (some noted difficulties due to the sub-
space view), the second question received more favorable ratings.
Next, we evaluated the effectiveness of the metric charts. Partic-
ipants were asked whether the metric chart helps to identify the
basis vector with the highest score, conveys performance across
metrics, and helps finding similar-performing vectors for single or
multiple metrics. They were also asked if reordering helps in iden-
tifying vectors with similar performance. The responses confirmed
that the metric chart is valuable and effective. We then asked about
the attribution of canonical basis vectors to a given vector, which
participants also confirmed to be useful. Regarding bookmarks, we
assessed whether they help mark interesting subspaces and allow
comparisons across facets. Finally, participants provided additional
feedback. One participant noted that the smooth transition between
stages significantly eases the exploration process.

6.3. Performance

To assess performance, we followed a similar approach to Lawonn
et al. [LME∗23]. We generated three k-dimensional mixture models
for k = 6,12,18. Each model consists of k+ 1 equally weighted t-
distributions, with mean positions corresponding to the vertices of a
k-dimensional simplex and a covariance matrix Σ= I. Additionally,
we sampled 10,000 points for each mixture model. We conducted
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Table 1: Average rendering times in ms for a k-dimensional dataset
with k + 1 t-distributions at a resolution of 3840× 2160. The set
includes 10,000 points rendered in the detail view.

Stage (Rendering) k = 6 k = 12 k = 18
1 0.60192 0.765367 0.967857
2 0.55274 1.10414 2.10762
3 (MIP) 2.75559 10.3602 33.3151
3 (Hulls) 2.45783 8.73736 22.5291
3 (DVR) 8.56939 22.6289 41.3969
Detail View (MIP) 1.88022 3.44845 5.71082
Detail View (Hulls) 1.35836 2.09915 2.72232
Detail View (DVR) 12.9403 22.8568 33.0279

Table 2: Average loading times and standard deviation for a k-
dimensional dataset with visibility metric (tvis) and without (t).

Loading k ∅ tvis [s] std tvis [s] ∅ t [s] std t [s]
Dataset 6 0.30684 0.01475 0.11833 0.00361
Dataset 12 1.49768 0.00584 0.21090 0.00621
Dataset 18 4.68488 0.00898 0.30893 0.00561
Stage 2 6 0.11384 0.01350 0.01183 0.00537
Stage 2 12 1.14037 0.03022 0.01379 0.00421
Stage 2 18 4.40502 0.00876 0.02178 0.00103
Stage 3 6 0.12927 0.01281 0.02153 0.00255
Stage 3 12 1.01967 0.00164 0.03703 0.01543
Stage 3 18 4.41620 0.00905 0.08840 0.01951
Detail View 6 - - 0.11763 0.02381
Detail View 12 - - 0.17403 0.01680
Detail View 18 - - 0.22576 0.01859

two experiments using an Intel Core i7 @3.60GHz, 32 GB RAM,
and an NVIDIA GeForce RTX 3070ti. In the first experiment, we
measured rendering times for all stages and views as the camera ro-
tated 360 degrees longitude around the prism center. As shown in
Table 1, the tool achieves real-time performance with a minimum
of 23 frames per second when displaying the third stage with DVR
for k = 18. In all other cases, it maintains at least 30 frames per sec-
ond. In the second experiment, we measured the time required to
open the dataset, enter the second stage, third stage, and the de-
tail view, each time selecting a random tile. After each run, we
switched between datasets before repeating the measurements for
a specific dataset. As shown in Table 2, the most time-consuming
step is determining the visibility scores. To reduce loading times
between stages, we allow users to deactivate this metric. For our
tests, this adjustment is particularly relevant for the 18-dimensional
dataset, where loading times average up to 4.4 seconds. For the
other datasets, the tool demonstrates efficient response times, with
a maximum average loading time of 1.1 seconds.

7. Discussion

Increasing Number of Dimensions. As the number of dimen-
sions increases, the number of tiles per facet grows as well, re-
sulting in smaller tiles and UI elements with less visibility. As for
the attribution (flower) glyph, Onzenoodt et al. [vOVR22] assessed
how accurately users could estimate the values of each segment for
up to 13 dimensions. We refer to the supplemental material for ad-
ditional results on data sets with varying number of dimensions.

Increasing Number of Distributions. Another challenge is the
growing number of distributions. To address this challenge, we al-
low users to scale axes and hide distributions as needed, which is
referred to as elision [Mun14b].

Choice of Metrics. Our system uses metrics, namely variance,
sparsity, and visibility, to guide the user through the assembly of
a projection basis. If users are not interested in finding a projection
that meets those specific criteria, there is a clear risk that our sys-
tem guides them away from their needs. The dependence of quality
metrics on the data itself, the users, and their tasks has been a well-
documented relationship [BBK∗18].

Sparsity in Higher-Dimensions. As the number of dimensions in-
creases, the sparsity metric alone becomes less descriptive, since
high-dimensional non-canonical basis vectors are rarely formed
from few attributes. In the supplemental material, we included an
experiment on a 28-dimensional data set, where the tiles are sorted
by sparsity. In practice, we recommend to use the sparsity metric in
conjunction with other metrics on higher-dimensional data sets.

Further Distributions. Our system could be extended to contain
further distributions. For example, the log-normal distribution, pa-
rameterized by a mean vector and covariance matrix, can be pro-
jected analogously to Eqs.(3) and (4). These projections can then
be visualized either by deriving closed-form expressions or through
numerical computations, as described in Section 4.6. The Cauchy
distribution is inherently included in our framework as a special
case of the multivariate t-distribution when ν = 1.

8. Conclusion and Future Work

The visual exploration of high-dimensional, multi-variate mixture
models is a challenging task. In this paper, we developed a multi-
faceted view that allows the user to explore linear subspaces onto
which the data distributions can be projected. Our system guides
the user in a step-by-step process, adding one basis vector at a
time. For each choice, several options are visualized, and quanti-
tative quality metrics regarding retained variance, sparsity, and vis-
ibility are augmented. The interactive visualization system supports
the user in various data-driven and model-driven exploration tasks.
Users, including visualization and data science experts, have eval-
uated the system’s effectiveness.

In the future, we would like to explore comparisons of multiple
prism views shown side-by-side. We also consider adding a feature
to reveal occluded parts of our three-dimensional visualizations,
using an approach similar to [LMG24]. At present, the tiles can
be sorted according to three different metrics. Clustering the tiles
would enhance the scalability to a higher number of tiles, leading
to a hierarchical exploration of basis vector choices. Further, the
rendering could potentially be accelerated by rasterizing ellipsoid
proxies. Currently, our tool is designed to support concrete tasks.
Aiming for a more general system that supports a wider set of high-
level tasks would be another interesting avenue for future work.
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