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Introduction

• Shadows result of the absence of 
light due to occlusion

• Shadows add realism to a lighted 
scene and make it easier for a viewer 
to observe spatial relationships 
between objects 

• They give a greater sense of depth to 
our scene and objects
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Introduction

• Shadows are tricky to implement 

• There are several good shadow approximation techniques, but they 
all have their little quirks and annoyances

• One technique used by most videogames that gives decent results 
and is relatively easy to implement is shadow mapping 

• Shadow mapping is not too difficult to understand, doesn’t cost too 
much in performance and is quite easily extended into more 
advanced algorithms

3



Shadow Mapping

• Idea: we render the scene from the light, everything seen is lit and 
everything else must be in shadow 

• Imagine a floor with a large box between itself and a light source

• Light source will see this box and not the floor, thus, floor should be 
in shadow
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Shadow Mapping

• Yellow lines represent the fragments that the light source can see 

• Occluded fragments are shown as black lines (shadowed) 
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Shadow Mapping

• Get a point on the ray where it first hit an object and compare this 
closest point to other points on this ray 

• Then basic test to see if a test point’s ray position is further down the 
ray than the closest point if so, test point must be in shadow 

• Iterating through thousands of light rays is extremely inefficient →
real-time rendering? 

• Do similar, but without casting light rays, using the depth buffer
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Shadow Mapping

• Value in the depth buffer corresponds to the depth of a fragment 
clamped to [0,1] from the camera’s point of view 

• Render the scene from the light’s perspective and store the resulting 
depth values in a texture 

• Then, can sample the closest depth values as seen from the light’s 
perspective 

• Depth values show the first fragment visible from the light’s 
perspective 

• We store all these depth values in a texture that we call a depth map 
or shadow map

7



Shadow Mapping
• Left: directional light source (light rays parallel) casting a shadow

• Create depth map by rendering the scene (from the light) using a view and 
projection matrix specific to that light source 

• This projection and view matrix together form a transformation that transforms 
any 3D position to the light’s visible coordinate space
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Directional light has not a position (modelled infinitely far away) 

For shadow mapping, need to render the scene from the light → from 
a position somewhere along the lines of the light direction
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Shadow Mapping

• Right: same directional light and the viewer 

• Render a fragment (orange), have to determine whether shadowed  

• Transform point to the light’s coordinate space 
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Shadow Mapping

• From the light its z coordinate is 0.9 

• Can also index the depth map at this point, which is 0.4 

• Depth map returned a depth smaller than the depth at point P → P is 
occluded and thus in shadow
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Shadow Mapping

• Shadow mapping consists of two passes: 

• 1st render the depth map 

• 2nd render the scene as normal and use the generated depth map to 
calculate whether fragments are in shadow 
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Depth Map
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Depth Map

• 1st pass requires a depth map 

• The depth map is the depth texture from the light’s perspective 

• Need to store the rendered result of a scene into a texture → need 
framebuffers again
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Depth Map

• First, create a framebuffer object for rendering the depth map:
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unsigned int depthMapFBO;
glGenFramebuffers(1, &depthMapFBO);



Depth Map

• Next, create a 2D texture for the framebuffer’s depth buffer:
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const unsigned int SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
unsigned int depthMap;
glGenTextures(1, &depthMap);
glBindTexture(GL_TEXTURE_2D, depthMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, 

SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);



Depth Map

• Generated depth texture can attach as framebuffer’s depth buffer:

17

glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, 

depthMap, 0);
glDrawBuffer(GL_NONE);
glReadBuffer(GL_NONE);
glBindFramebuffer(GL_FRAMEBUFFER, 0);



Depth Map

• 1st: generating the depth map 

• The complete rendering stage of both passes will looks a bit like this:
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// 1. first render to depth map
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO); 
glClear(GL_DEPTH_BUFFER_BIT); 
ConfigureShaderAndMatrices(); 
RenderScene();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// 2. then render scene as normal with shadow mapping (using depth map) 
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ConfigureShaderAndMatrices(); 
glBindTexture(GL_TEXTURE_2D, depthMap); 
RenderScene();



Light Space Transform

• Unknown: ConfigureShaderAndMatrices function 

• 2nd pass: projection and view matrices are set and the relevant model 
matrices per object 

• However, in 1st pass use a different projection and view matrix to 
render the scene from the light’s point of view
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Light Space Transform

• Modelling a directional light source → light rays are parallel 

• Use an orthographic projection matrix for the light source where 
there is no perspective deform:

• Projection matrix indirectly determines the range of what is visible 
(clipped) 

• Make sure projection frustum contains the objects in the depth map 
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float near_plane = 1.0f, far_plane = 7.5f;
lightProjection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, near_plane, 

far_plane);



Light Space Transform

• To create a view matrix, use glm::lookAt function; this time with the 
light source’s position looking at the scene’s center:
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lightView = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0.0, 1.0, 0.0));



Light Space Transform

• These, gives a light space transformation matrix (transforms each 
world-space vector into the space as visible from the light source):

• lightSpaceMatrix is the transformation matrix T (recall image)  

• Can render the scene as usual as long as we give the shader the light-
space equivalents of the projection and view matrices 

• To save performance we’re going to use a different, but much simpler 
shader for rendering to the depth map
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lightSpaceMatrix = lightProjection * lightView;



Render to Depth Map

• Want to use a simple shader that only transforms the vertices to light 
space 

• For such a simple shader, use the following vertex shader:
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#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 lightSpaceMatrix;
uniform mat4 model;

void main()
{

gl_Position = lightSpaceMatrix * model * vec4(aPos, 1.0);
}



Render to Depth Map

• Have no color buffer, so can simply use an empty fragment shader:
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#version 330 core

void main()
{             

// gl_FragDepth = gl_FragCoord.z;
}



Render to Depth Map

• Rendering the depth buffer becomes:
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simpleDepthShader.use();
simpleDepthShader.setMat4("lightSpaceMatrix", lightSpaceMatrix);

glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glClear(GL_DEPTH_BUFFER_BIT);
renderScene(simpleDepthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);



Render to Depth Map

• Is a filled depth buffer holding the 
closest depth of each visible 
fragment from the light’s 
perspective 

• By projecting this texture onto a 2D 
quad that fills the screen we get 
something like this:
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Render to Depth Map

• Rendering the depth map onto a quad (fragment shader):
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#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D depthMap;

void main()
{             

float depthValue = texture(depthMap, TexCoords).r;
FragColor = vec4(vec3(depthValue), 1.0); 

}



Rendering Shadows

28



Rendering Shadows

• With a generated depth map, can start generating shadows  

• Check if fragment is in shadow is executed in the fragment shader, 
but we do the light-space transformation in the vertex shader:
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#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;

out VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
vec4 FragPosLightSpace;

} vs_out;
…



Rendering Shadows
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…
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
uniform mat4 lightSpaceMatrix;

void main()
{

vs_out.FragPos = vec3(model * vec4(aPos, 1.0));
vs_out.Normal = transpose(inverse(mat3(model))) * aNormal;
vs_out.TexCoords = aTexCoords;
vs_out.FragPosLightSpace = lightSpaceMatrix * vec4(vs_out.FragPos, 1.0);
gl_Position = projection * view * model * vec4(aPos, 1.0);

}



Rendering Shadows

• Fragment shader to render the scene uses the Blinn-Phong lighting 

• Within the fragment shader calculate a shadow value that is either 
1.0 when the fragment is in shadow or 0.0 when not in shadow 

• Diffuse and specular colors are multiplied by this shadow component 

• Shadows are rarely completely dark due to light scattering → leave 
the ambient color out of the shadow multiplications
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Rendering Shadows
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#version 330 core
out vec4 FragColor;

in VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
vec4 FragPosLightSpace;

} fs_in;

uniform sampler2D diffuseTexture;
uniform sampler2D shadowMap;
uniform vec3 lightPos;
uniform vec3 viewPos;

float ShadowCalculation(vec4 fragPosLightSpace)
{
…

}

void main()
{           

// Blinn-Phong
…
// calculate shadow
float shadow = ShadowCalculation(fs_in.FragPosLightSpace);                      
vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;    
FragColor = vec4(lighting, 1.0);

}



Rendering Shadows

• First, transform light-space fragment position in clip-space to NDCs

• When output a clip-space vertex position to gl_Position (vertex 
shader), OpenGL does a perspective divide (transform clip-space 
coordinates in [−𝑤,𝑤] to [−1,1] by dividing 𝑤)
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Rendering Shadows

• Clip-space FragPosLightSpace is not passed to the fragment shader via 
gl_Position→manual perspective division:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
…

}



Rendering Shadows

When using an orthographic projection matrix the 𝒘 component of a 
vertex remains untouched so this step is actually quite meaningless.

However, it is necessary when using perspective projection so 
keeping this line ensures it works with both projection matrices.
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Rendering Shadows

• Depth from depth map is in [0,1] and we want to use projCoords to 
sample from the depth map, so we transform NDC to [0,1]:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
…

}



Rendering Shadows

• With these, can sample the depth map 

• This gives us the closest depth from the light’s point of view:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// get closest depth value from light's perspective (using [0,1] range
// fragPosLight as coords)
float closestDepth = texture(shadowMap, projCoords.xy).r;    
…

}



Rendering Shadows

• To get the current depth, retrieve the projected vector’s z coordinate 
which equals the depth of the fragment from the light’s perspective:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// get depth of current fragment from light's perspective
float currentDepth = projCoords.z;    
…

}



Rendering Shadows

• Actual comparison is a check whether currentDepth is higher than 
closestDepth if so, the fragment is in shadow:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// check whether current frag pos is in shadow
float shadow = currentDepth > closestDepth ? 1.0 : 0.0;

return shadow;
}



Rendering Shadows

• The complete ShadowCalculation function then becomes:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
// transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
// get closest depth value from light's perspective (using [0,1] range     
// fragPosLight as coords)
float closestDepth = texture(shadowMap, projCoords.xy).r; 
// get depth of current fragment from light's perspective
float currentDepth = projCoords.z;
// check whether current frag pos is in shadow
float shadow = currentDepth > closestDepth ? 1.0 : 0.0;

return shadow;
}



F5…

• … there will be shadows
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Improving Shadow Maps
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Introduction

• Something is wrong from the previous 
image 

• A closer zoom shows us a very obvious
Moiré-like pattern:
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Shadow Acne 
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• Large part of the floor quad rendered with alternating black lines 

• This shadow mapping artifact is called shadow acne:



Shadow Acne 
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• Shadow map limited by resolution, multiple fragments can sample 
same value from depth map when far away from the light source 

• Image shows floor, each tilted panel represents a single texel of the 
depth map 

• As you can see, several fragments sample the same depth sample



Shadow Acne 
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• Becomes an issue when the light source looks at an angle towards the 
surface as in that case the depth map is also rendered from an angle 

• Several fragments access the same tilted depth texel while some are 
above and some below the floor → shadow discrepancy 

• Then, some fragments are in shadow and some are not



Improving Shadow Maps
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• Solve this issue with a small little hack called a shadow bias 

• Simply offset the depth of the surface (or the shadow map) by a small 
bias amount such that fragments are not incorrectly considered 
below the surface

           



Improving Shadow Maps

• With the bias, get a depth smaller than the surface’s depth → entire 
surface is correctly lit without any shadows 

• We can implement such a bias as follows:
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float bias = 0.005;
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;



Improving Shadow Maps

• Bias of 0.005 almost solves the issues, but 
some surfaces that have a steep angle to the 
light source might still produce shadow acne 

• Better: change the amount of bias based on 
the surface angle towards the light:

• Maximum bias of 0.05 and a minimum of 
0.005 (based on normal and light direction)
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float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);



F5…

• ... much better results

• Choosing correct bias value(s) requires some 
tweaking (different in each scene) 

• Mostly, incrementing the bias until all acne is 
removed
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Peter Panning

• A disadvantage of using a shadow bias is 
that you’re applying an offset to the 
actual depth of objects

• Bias might become large enough to see 
a visible offset of shadows compared to 
the actual object locations:
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Peter Panning

• This artifact is called Peter panning (objects slightly detached from 
their shadows) 

• May happen, when OpenGL culls back-faces

• Use a trick to solve most peter panning issue by using front face 
culling when rendering the depth map
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Peter Panning

• Only need depth values for the depth map (not matter for solid 
objects whether take the depth of front faces or back faces) 

• Using their back face depths does not give wrong results as it does 
not matter having shadows inside objects; cannot see there anyways
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Peter Panning

• To mostly fix Peter panning we cull front faces 

• Note that you need to enable GL_CULL_FACE first
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glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
…
renderScene(simpleDepthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDisable(GL_CULL_FACE);



Peter Panning
• Solves the issue, only for solid objects (have an inside 

without openings) 

• Works perfectly fine on cubes, but won’t on the floor 
(culling front face removes the floor)

• Floor is a single plane and would completely be culled 

• Solve Peter panning with this, care has to be taken to 
only cull the front faces of objects

• Also objects close to the shadow receiver (like the 
distant cube) might still give incorrect results 

• Care should be taken to use front face culling on 
objects where it makes sense 

• However, with normal bias values one can generally 
avoid peter panning
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Over Sampling

• Another problem is that some regions outside 
the light’s visible frustum are in shadow

• Projected coordinates outside the light’s 
frustum higher than 1.0→ will sample the 
depth texture outside its default range of 
[0,1]

• Based on wrapping method get incorrect 
depth results not based on the real depth 
values from the light source
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Over Sampling

• Reason: we set the depth map’s wrapping options to GL_REPEAT

• Better: all coordinates outside the depth map’s range have a depth of 
1.0, these coordinates will never be in shadow (no object have a 
depth larger than 1.0) 

• Achieve this by storing a border color and set the depth map’s texture 
wrap options to GL_CLAMP_TO_BORDER:
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glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float borderColor[] = { 1.0, 1.0, 1.0, 1.0 };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);



Over Sampling

• Projected coordinate is further than the light’s far plane when its 𝑧
coordinate is larger than 1.0

• Wrapping method not work anymore (compare the 𝑧 component 
with the depth map values → returns true for 𝑧 larger than 1.0)

• Fix: simply force the shadow value to 0.0 whenever the projected 
vector’s 𝑧 coordinate is larger than 1.0:
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float ShadowCalculation(vec4 fragPosLightSpace)
{ 

…
if(projCoords.z > 1.0)

shadow = 0.0;
return shadow;

}



F5…

• … problem solved
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Percentage-Closer Filtering (PCF)
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Introduction

• Zoom in on the shadows the resolution 
dependency of shadow mapping quickly 
becomes apparent

• Depth map fixed resolution, depth frequently 
spans more than one fragment per texel

• Thus, multiple fragments sample the same 
depth value from the depth map and come to 
the same shadow conclusions, which 
produces these jagged blocky edges
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Introduction

• Reduce blocky shadows by increasing the depth map resolution or by 
trying to fit the light frustum as closely to the scene as possible

• Here, change resolution: 

62

const unsigned int SHADOW_WIDTH = 4096; 
const unsigned int SHADOW_HEIGHT = 4096;



Introduction

• Another (partial) solution is called percentage-closer filtering (PCF), a 
term with many different filtering functions that produce softer 
shadows, making them appear less blocky or hard 

• Idea is to sample more than once from the depth map, each time 
with slightly different texture coordinates 

• For each individual sample we check whether it is in shadow or not

• All the sub-results are then combined and averaged and we get a nice 
soft looking shadow
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PCF

• Simple implementation of PCF (sample the surrounding texels of the 
depth map and average the results):
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float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
{

for(int y = -1; y <= 1; ++y)
{

float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y)*
texelSize).r; 

shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;        
}    

}
shadow /= 9.0;



F5…

• … better from a distance
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sampler2DShadow*
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sampler2DShadow

• Change und add texture parameters:
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glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);



sampler2DShadow

• Fragment Shader:
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//uniform sampler2D shadowMap;
uniform sampler2DShadow shadowMap;
…
float ShadowCalculation(vec4 fragPosLightSpace)
{

vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
projCoords = projCoords * 0.5 + 0.5;
projCoords.z-=0.005;

float closestDepth = 1-texture(shadowMap, projCoords); 
return closestDepth;

}



F5…

• … simple shadows
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sampler2DShadow

• Add PCF:
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float ShadowCalculation(vec4 fragPosLightSpace)
{

vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
projCoords = projCoords * 0.5 + 0.5;
float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
float bias = max(0.05 * (1.0 - dot(normalize(fs_in.Normal), normalize(lightPos -

fs_in.FragPos))), 0.005);
for(int x = -1; x <= 1; ++x)
{

for(int y = -1; y <= 1; ++y)
{

shadow += texture(shadowMap, vec3(projCoords.xy + vec2(x, y) * 
texelSize, projCoords.z-bias));         

}    
}
shadow /= 9.0;
return 1-shadow;

}



F5…

• … much better
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Orthographic vs. Projection
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Introduction

• Difference between rendering the depth map with an orthographic or 
a projection matrix 

• Orthographic projection does not deform the scene with perspective 
→ view/light rays are parallel (great for directional lights)
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Introduction

• Perspective projection matrix deforms vertices based on perspective 
which gives different results:
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Introduction

• Another subtle difference with a perspective projection matrix: 
visualizing the depth buffer will often give an almost completely white 
result 

• With perspective projection depth is transformed to non-linear depth 
values with most of its noticeable range close to the near plane 

• To properly view the depth values (as with orthographic) transform 
the non-linear depth values to linear

75



Introduction
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#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D depthMap;
uniform float near_plane;
uniform float far_plane;

// required when using a perspective projection matrix
float LinearizeDepth(float depth)
{

float z = depth * 2.0 - 1.0; // Back to NDC 
return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane));

}

void main()
{             

float depthValue = texture(depthMap, TexCoords).r;
FragColor = vec4(vec3(LinearizeDepth(depthValue) / far_plane), 1.0); // perspective
//FragColor = vec4(vec3(depthValue), 1.0); // orthographic

}



Questions???
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