
Computer Graphics II
- Shadow Mapping

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• Shadows result of the absence of
light due to occlusion

• Shadows add realism to a lighted
scene and make it easier for a viewer
to observe spatial relationships
between objects

• They give a greater sense of depth to
our scene and objects

2

Introduction

• Shadows are tricky to implement

• There are several good shadow approximation techniques, but they
all have their little quirks and annoyances

• One technique used by most videogames that gives decent results
and is relatively easy to implement is shadow mapping

• Shadow mapping is not too difficult to understand, doesn’t cost too
much in performance and is quite easily extended into more
advanced algorithms

3

Shadow Mapping

• Idea: we render the scene from the light, everything seen is lit and
everything else must be in shadow

• Imagine a floor with a large box between itself and a light source

• Light source will see this box and not the floor, thus, floor should be
in shadow

4

Shadow Mapping

• Yellow lines represent the fragments that the light source can see

• Occluded fragments are shown as black lines (shadowed)

5

Shadow Mapping

• Get a point on the ray where it first hit an object and compare this
closest point to other points on this ray

• Then basic test to see if a test point’s ray position is further down the
ray than the closest point if so, test point must be in shadow

• Iterating through thousands of light rays is extremely inefficient →
real-time rendering?

• Do similar, but without casting light rays, using the depth buffer

6

Shadow Mapping

• Value in the depth buffer corresponds to the depth of a fragment
clamped to [0,1] from the camera’s point of view

• Render the scene from the light’s perspective and store the resulting
depth values in a texture

• Then, can sample the closest depth values as seen from the light’s
perspective

• Depth values show the first fragment visible from the light’s
perspective

• We store all these depth values in a texture that we call a depth map
or shadow map

7

Shadow Mapping
• Left: directional light source (light rays parallel) casting a shadow

• Create depth map by rendering the scene (from the light) using a view and
projection matrix specific to that light source

• This projection and view matrix together form a transformation that transforms
any 3D position to the light’s visible coordinate space

8

Directional light has not a position (modelled infinitely far away)

For shadow mapping, need to render the scene from the light → from
a position somewhere along the lines of the light direction

9

Shadow Mapping

• Right: same directional light and the viewer

• Render a fragment (orange), have to determine whether shadowed

• Transform point to the light’s coordinate space

10

Shadow Mapping

• From the light its z coordinate is 0.9

• Can also index the depth map at this point, which is 0.4

• Depth map returned a depth smaller than the depth at point P → P is
occluded and thus in shadow

11

Shadow Mapping

• Shadow mapping consists of two passes:

• 1st render the depth map

• 2nd render the scene as normal and use the generated depth map to
calculate whether fragments are in shadow

12

Depth Map

13

Depth Map

• 1st pass requires a depth map

• The depth map is the depth texture from the light’s perspective

• Need to store the rendered result of a scene into a texture → need
framebuffers again

14

Depth Map

• First, create a framebuffer object for rendering the depth map:

15

unsigned int depthMapFBO;
glGenFramebuffers(1, &depthMapFBO);

Depth Map

• Next, create a 2D texture for the framebuffer’s depth buffer:

16

const unsigned int SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
unsigned int depthMap;
glGenTextures(1, &depthMap);
glBindTexture(GL_TEXTURE_2D, depthMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH,

SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

Depth Map

• Generated depth texture can attach as framebuffer’s depth buffer:

17

glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,

depthMap, 0);
glDrawBuffer(GL_NONE);
glReadBuffer(GL_NONE);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Depth Map

• 1st: generating the depth map

• The complete rendering stage of both passes will looks a bit like this:

18

// 1. first render to depth map
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glClear(GL_DEPTH_BUFFER_BIT);
ConfigureShaderAndMatrices();
RenderScene();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// 2. then render scene as normal with shadow mapping (using depth map)
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ConfigureShaderAndMatrices();
glBindTexture(GL_TEXTURE_2D, depthMap);
RenderScene();

Light Space Transform

• Unknown: ConfigureShaderAndMatrices function

• 2nd pass: projection and view matrices are set and the relevant model
matrices per object

• However, in 1st pass use a different projection and view matrix to
render the scene from the light’s point of view

19

Light Space Transform

• Modelling a directional light source → light rays are parallel

• Use an orthographic projection matrix for the light source where
there is no perspective deform:

• Projection matrix indirectly determines the range of what is visible
(clipped)

• Make sure projection frustum contains the objects in the depth map

20

float near_plane = 1.0f, far_plane = 7.5f;
lightProjection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, near_plane,

far_plane);

Light Space Transform

• To create a view matrix, use glm::lookAt function; this time with the
light source’s position looking at the scene’s center:

21

lightView = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0.0, 1.0, 0.0));

Light Space Transform

• These, gives a light space transformation matrix (transforms each
world-space vector into the space as visible from the light source):

• lightSpaceMatrix is the transformation matrix T (recall image)

• Can render the scene as usual as long as we give the shader the light-
space equivalents of the projection and view matrices

• To save performance we’re going to use a different, but much simpler
shader for rendering to the depth map

22

lightSpaceMatrix = lightProjection * lightView;

Render to Depth Map

• Want to use a simple shader that only transforms the vertices to light
space

• For such a simple shader, use the following vertex shader:

23

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 lightSpaceMatrix;
uniform mat4 model;

void main()
{

gl_Position = lightSpaceMatrix * model * vec4(aPos, 1.0);
}

Render to Depth Map

• Have no color buffer, so can simply use an empty fragment shader:

24

#version 330 core

void main()
{

// gl_FragDepth = gl_FragCoord.z;
}

Render to Depth Map

• Rendering the depth buffer becomes:

25

simpleDepthShader.use();
simpleDepthShader.setMat4("lightSpaceMatrix", lightSpaceMatrix);

glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glClear(GL_DEPTH_BUFFER_BIT);
renderScene(simpleDepthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Render to Depth Map

• Is a filled depth buffer holding the
closest depth of each visible
fragment from the light’s
perspective

• By projecting this texture onto a 2D
quad that fills the screen we get
something like this:

26

Render to Depth Map

• Rendering the depth map onto a quad (fragment shader):

27

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D depthMap;

void main()
{

float depthValue = texture(depthMap, TexCoords).r;
FragColor = vec4(vec3(depthValue), 1.0);

}

Rendering Shadows

28

Rendering Shadows

• With a generated depth map, can start generating shadows

• Check if fragment is in shadow is executed in the fragment shader,
but we do the light-space transformation in the vertex shader:

29

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;

out VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
vec4 FragPosLightSpace;

} vs_out;
…

Rendering Shadows

30

…
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
uniform mat4 lightSpaceMatrix;

void main()
{

vs_out.FragPos = vec3(model * vec4(aPos, 1.0));
vs_out.Normal = transpose(inverse(mat3(model))) * aNormal;
vs_out.TexCoords = aTexCoords;
vs_out.FragPosLightSpace = lightSpaceMatrix * vec4(vs_out.FragPos, 1.0);
gl_Position = projection * view * model * vec4(aPos, 1.0);

}

Rendering Shadows

• Fragment shader to render the scene uses the Blinn-Phong lighting

• Within the fragment shader calculate a shadow value that is either
1.0 when the fragment is in shadow or 0.0 when not in shadow

• Diffuse and specular colors are multiplied by this shadow component

• Shadows are rarely completely dark due to light scattering → leave
the ambient color out of the shadow multiplications

31

Rendering Shadows

32

#version 330 core
out vec4 FragColor;

in VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
vec4 FragPosLightSpace;

} fs_in;

uniform sampler2D diffuseTexture;
uniform sampler2D shadowMap;
uniform vec3 lightPos;
uniform vec3 viewPos;

float ShadowCalculation(vec4 fragPosLightSpace)
{
…

}

void main()
{

// Blinn-Phong
…
// calculate shadow
float shadow = ShadowCalculation(fs_in.FragPosLightSpace);
vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;
FragColor = vec4(lighting, 1.0);

}

Rendering Shadows

• First, transform light-space fragment position in clip-space to NDCs

• When output a clip-space vertex position to gl_Position (vertex
shader), OpenGL does a perspective divide (transform clip-space
coordinates in [−𝑤,𝑤] to [−1,1] by dividing 𝑤)

33

Rendering Shadows

• Clip-space FragPosLightSpace is not passed to the fragment shader via
gl_Position→manual perspective division:

34

float ShadowCalculation(vec4 fragPosLightSpace)
{

// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
…

}

Rendering Shadows

When using an orthographic projection matrix the 𝒘 component of a
vertex remains untouched so this step is actually quite meaningless.

However, it is necessary when using perspective projection so
keeping this line ensures it works with both projection matrices.

35

Rendering Shadows

• Depth from depth map is in [0,1] and we want to use projCoords to
sample from the depth map, so we transform NDC to [0,1]:

36

float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
…

}

Rendering Shadows

• With these, can sample the depth map

• This gives us the closest depth from the light’s point of view:

37

float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// get closest depth value from light's perspective (using [0,1] range
// fragPosLight as coords)
float closestDepth = texture(shadowMap, projCoords.xy).r;
…

}

Rendering Shadows

• To get the current depth, retrieve the projected vector’s z coordinate
which equals the depth of the fragment from the light’s perspective:

38

float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// get depth of current fragment from light's perspective
float currentDepth = projCoords.z;
…

}

Rendering Shadows

• Actual comparison is a check whether currentDepth is higher than
closestDepth if so, the fragment is in shadow:

39

float ShadowCalculation(vec4 fragPosLightSpace)
{

…
// check whether current frag pos is in shadow
float shadow = currentDepth > closestDepth ? 1.0 : 0.0;

return shadow;
}

Rendering Shadows

• The complete ShadowCalculation function then becomes:

40

float ShadowCalculation(vec4 fragPosLightSpace)
{

// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
// transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
// get closest depth value from light's perspective (using [0,1] range
// fragPosLight as coords)
float closestDepth = texture(shadowMap, projCoords.xy).r;
// get depth of current fragment from light's perspective
float currentDepth = projCoords.z;
// check whether current frag pos is in shadow
float shadow = currentDepth > closestDepth ? 1.0 : 0.0;

return shadow;
}

F5…

• … there will be shadows

41

Improving Shadow Maps

42

Introduction

• Something is wrong from the previous
image

• A closer zoom shows us a very obvious
Moiré-like pattern:

43

Shadow Acne

44

• Large part of the floor quad rendered with alternating black lines

• This shadow mapping artifact is called shadow acne:

Shadow Acne

45

• Shadow map limited by resolution, multiple fragments can sample
same value from depth map when far away from the light source

• Image shows floor, each tilted panel represents a single texel of the
depth map

• As you can see, several fragments sample the same depth sample

Shadow Acne

46

• Becomes an issue when the light source looks at an angle towards the
surface as in that case the depth map is also rendered from an angle

• Several fragments access the same tilted depth texel while some are
above and some below the floor → shadow discrepancy

• Then, some fragments are in shadow and some are not

Improving Shadow Maps

47

• Solve this issue with a small little hack called a shadow bias

• Simply offset the depth of the surface (or the shadow map) by a small
bias amount such that fragments are not incorrectly considered
below the surface

Improving Shadow Maps

• With the bias, get a depth smaller than the surface’s depth → entire
surface is correctly lit without any shadows

• We can implement such a bias as follows:

48

float bias = 0.005;
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;

Improving Shadow Maps

• Bias of 0.005 almost solves the issues, but
some surfaces that have a steep angle to the
light source might still produce shadow acne

• Better: change the amount of bias based on
the surface angle towards the light:

• Maximum bias of 0.05 and a minimum of
0.005 (based on normal and light direction)

49

float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);

F5…

• ... much better results

• Choosing correct bias value(s) requires some
tweaking (different in each scene)

• Mostly, incrementing the bias until all acne is
removed

50

Peter Panning

• A disadvantage of using a shadow bias is
that you’re applying an offset to the
actual depth of objects

• Bias might become large enough to see
a visible offset of shadows compared to
the actual object locations:

51

Peter Panning

• This artifact is called Peter panning (objects slightly detached from
their shadows)

• May happen, when OpenGL culls back-faces

• Use a trick to solve most peter panning issue by using front face
culling when rendering the depth map

52

Peter Panning

• Only need depth values for the depth map (not matter for solid
objects whether take the depth of front faces or back faces)

• Using their back face depths does not give wrong results as it does
not matter having shadows inside objects; cannot see there anyways

53

Peter Panning

• To mostly fix Peter panning we cull front faces

• Note that you need to enable GL_CULL_FACE first

54

glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
…
renderScene(simpleDepthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDisable(GL_CULL_FACE);

Peter Panning
• Solves the issue, only for solid objects (have an inside

without openings)

• Works perfectly fine on cubes, but won’t on the floor
(culling front face removes the floor)

• Floor is a single plane and would completely be culled

• Solve Peter panning with this, care has to be taken to
only cull the front faces of objects

• Also objects close to the shadow receiver (like the
distant cube) might still give incorrect results

• Care should be taken to use front face culling on
objects where it makes sense

• However, with normal bias values one can generally
avoid peter panning

55

Over Sampling

• Another problem is that some regions outside
the light’s visible frustum are in shadow

• Projected coordinates outside the light’s
frustum higher than 1.0→ will sample the
depth texture outside its default range of
[0,1]

• Based on wrapping method get incorrect
depth results not based on the real depth
values from the light source

56

Over Sampling

• Reason: we set the depth map’s wrapping options to GL_REPEAT

• Better: all coordinates outside the depth map’s range have a depth of
1.0, these coordinates will never be in shadow (no object have a
depth larger than 1.0)

• Achieve this by storing a border color and set the depth map’s texture
wrap options to GL_CLAMP_TO_BORDER:

57

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float borderColor[] = { 1.0, 1.0, 1.0, 1.0 };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

Over Sampling

• Projected coordinate is further than the light’s far plane when its 𝑧
coordinate is larger than 1.0

• Wrapping method not work anymore (compare the 𝑧 component
with the depth map values → returns true for 𝑧 larger than 1.0)

• Fix: simply force the shadow value to 0.0 whenever the projected
vector’s 𝑧 coordinate is larger than 1.0:

58

float ShadowCalculation(vec4 fragPosLightSpace)
{

…
if(projCoords.z > 1.0)

shadow = 0.0;
return shadow;

}

F5…

• … problem solved

59

Percentage-Closer Filtering (PCF)

60

Introduction

• Zoom in on the shadows the resolution
dependency of shadow mapping quickly
becomes apparent

• Depth map fixed resolution, depth frequently
spans more than one fragment per texel

• Thus, multiple fragments sample the same
depth value from the depth map and come to
the same shadow conclusions, which
produces these jagged blocky edges

61

Introduction

• Reduce blocky shadows by increasing the depth map resolution or by
trying to fit the light frustum as closely to the scene as possible

• Here, change resolution:

62

const unsigned int SHADOW_WIDTH = 4096;
const unsigned int SHADOW_HEIGHT = 4096;

Introduction

• Another (partial) solution is called percentage-closer filtering (PCF), a
term with many different filtering functions that produce softer
shadows, making them appear less blocky or hard

• Idea is to sample more than once from the depth map, each time
with slightly different texture coordinates

• For each individual sample we check whether it is in shadow or not

• All the sub-results are then combined and averaged and we get a nice
soft looking shadow

63

PCF

• Simple implementation of PCF (sample the surrounding texels of the
depth map and average the results):

64

float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
{

for(int y = -1; y <= 1; ++y)
{

float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y)*
texelSize).r;

shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
}

}
shadow /= 9.0;

F5…

• … better from a distance

65

sampler2DShadow*

66

sampler2DShadow

• Change und add texture parameters:

67

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

sampler2DShadow

• Fragment Shader:

68

//uniform sampler2D shadowMap;
uniform sampler2DShadow shadowMap;
…
float ShadowCalculation(vec4 fragPosLightSpace)
{

vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
projCoords = projCoords * 0.5 + 0.5;
projCoords.z-=0.005;

float closestDepth = 1-texture(shadowMap, projCoords);
return closestDepth;

}

F5…

• … simple shadows

69

sampler2DShadow

• Add PCF:

70

float ShadowCalculation(vec4 fragPosLightSpace)
{

vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
projCoords = projCoords * 0.5 + 0.5;
float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
float bias = max(0.05 * (1.0 - dot(normalize(fs_in.Normal), normalize(lightPos -

fs_in.FragPos))), 0.005);
for(int x = -1; x <= 1; ++x)
{

for(int y = -1; y <= 1; ++y)
{

shadow += texture(shadowMap, vec3(projCoords.xy + vec2(x, y) *
texelSize, projCoords.z-bias));

}
}
shadow /= 9.0;
return 1-shadow;

}

F5…

• … much better

71

Orthographic vs. Projection

72

Introduction

• Difference between rendering the depth map with an orthographic or
a projection matrix

• Orthographic projection does not deform the scene with perspective
→ view/light rays are parallel (great for directional lights)

73

Introduction

• Perspective projection matrix deforms vertices based on perspective
which gives different results:

74

Introduction

• Another subtle difference with a perspective projection matrix:
visualizing the depth buffer will often give an almost completely white
result

• With perspective projection depth is transformed to non-linear depth
values with most of its noticeable range close to the near plane

• To properly view the depth values (as with orthographic) transform
the non-linear depth values to linear

75

Introduction

76

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D depthMap;
uniform float near_plane;
uniform float far_plane;

// required when using a perspective projection matrix
float LinearizeDepth(float depth)
{

float z = depth * 2.0 - 1.0; // Back to NDC
return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane));

}

void main()
{

float depthValue = texture(depthMap, TexCoords).r;
FragColor = vec4(vec3(LinearizeDepth(depthValue) / far_plane), 1.0); // perspective
//FragColor = vec4(vec3(depthValue), 1.0); // orthographic

}

Questions???

77

