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Introduction

• In the lighting lecture, introduced the Phong lighting model to bring a 
basic amount of realism into scenes 

• The Phong model looks quite nice, but has a few nuances we will 
focus on now
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Blinn-Phong

• Phong lighting efficient 
approximation of lighting 

• Specular reflections break down in 
certain conditions, when the 
shininess property is low resulting 
in a large (rough) specular area 

• When we use a specular shininess 
exponent of 1.0 on a flat textured 
plane:
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Blinn-Phong

• At the edges that the specular area 
is immediately cut off 

• The reason is that the angle 
between the view vector and the 
reflection vector is not allowed to 
go higher than 90° degrees (if 
angle larger, dot product becomes 
negative resulting in specular 
exponents of 0.0) 

• No light with angles higher than 
90°?
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Blinn-Phong

• Only true with the diffuse component (angle higher than 90° between 
the normal and light source means light source is below the lighted 
surface) → light’s diffuse contribution should equal 0.0
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Blinn-Phong

• Specular lighting measures between view and reflection direction 
vector
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Blinn-Phong

• 1977 Blinn-Phong shading model was 
introduced by James F. Blinn as an 
extension to the Phong shading, which 
overcomes our problem

• Instead of using a reflection vector, it uses 
a halfway vector (unit vector halfway 
between the view direction and the light 
direction)
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Blinn-Phong
• When view direction is perfectly aligned with 

the (now imaginary) reflection vector →
halfway vector = normal vector 

• The closer the viewer looks in the original 
reflection direction, the stronger the specular 
highlight

• Angle between the halfway vector and 
normal never exceeds 90° (unless the light is 
far below the surface) 

• Produces slightly different results, but mostly 
looks slightly more visually plausible, 
especially with low specular exponents 
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Blinn-Phong

• Getting the halfway vector is easy, we add the light’s direction vector 
and view vector together and normalize the result:
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Blinn-Phong

• Getting the halfway vector is easy, we add the light’s direction vector 
and view vector together and normalize the result:
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vec3 lightDir = normalize(lightPos - FragPos);
vec3 viewDir = normalize(viewPos - FragPos);
vec3 halfwayDir = normalize(lightDir + viewDir); 



Blinn-Phong

• Actual calculation of the specular term becomes a clamped dot 
product between the surface normal and the halfway vector to get 
the cosine angle between them that we again raise to a specular 
shininess exponent:

• And that’s it
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float spec = pow(max(dot(normal, halfwayDir), 0.0), shininess); 
vec3 specular = lightColor * spec;



F5…
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• … left Phong - 𝑃ℎ𝑜𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 8, right Blinn-Phong - Blinn −
𝑃ℎ𝑜𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 32



Blinn-Phong

• Simple fragment shader that switches between regular Phong
reflections and Blinn-Phong reflections:
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float spec = 0.0;
if(blinn)

{
vec3 halfwayDir = normalize(lightDir + viewDir);  
spec = pow(max(dot(normal, halfwayDir), 0.0), 32.0);

}
else

{
vec3 reflectDir = reflect(-lightDir, normal);
spec = pow(max(dot(viewDir, reflectDir), 0.0), 8.0);

}



Rim Lighting*
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Introduction

• Rim lighting also known as back-lighting

• Effect that simulates light around an object, 
light source placed behind the object

• Produces a bright rim of light around the
contours of the object

• Can simulate effect by determining how close
view direction is at the contour
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Introduction

• All we need is the view direction and the normal vector of the surface

• If the view direction is perpendicular to the normal, we are close at 
the contour, this has the greatest effect (top)

• If view direction and normal vector are almost collinear,
rim lighting is least noticeable (bottom)
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Rim Lighting

• Calculate this effect with the dot product 

• Perpendicular → highest effect

• Collinear → smallest effect

• 𝐶𝑟𝑖𝑚 color of the rim light, e.g., white 1,1,1

• 𝑟 power of the rim lighting

• < 𝑛, 𝑣 > dot product of normal and view vector
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Rim Lighting
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• Add function in the fragment shader:

vec3 rimLighting(vec3 normal, vec3 view, vec3 rimColor, float rimPower)
{

float res = 1.0 - dot(normal, view);
// Clamp it to the range 0 to 1
res = clamp(res, 0.0, 1.0);
res = pow(res, rimPower);
return res * rimColor;

}
…
void main()
{
…
FragColor+=vec4(rimLighting(normal, view, vec3(1,0.7,0.7), 2),0);
}



F5…
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• … rim lighting!



Notes

• Lighting at the contours

• Not realistic as it should only be
placed at the outline
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Cel/Toon Shading*
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Introduction

• Cel/toon shading is a non-photorealistic 
rendering technique

• Try to appear flat by using less shading
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https://commons.wikimedia.org/wiki/File:Toon-shader.jpg
https://creativecommons.org/licenses/by/2.0/deed.en



Introduction

• Normal shading is quantized with discrete colors 

• Shading in a range is mapped to a constant color 
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Cel/Toon Shading

• Calculate this effect with the ceil function

• Shading is in the range [0,1], ceil finds the nearest (greater) integer

• 𝐶𝑐𝑒𝑙𝑙 color of the cell shading, e.g., white 1,1,1

• 𝑛𝑢𝑚 number of colors used

• < 𝑛, 𝑣 > dot product of normal and view vector
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Cel/Toon Shading
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• Add function in the fragment shader:

vec3 celShading(vec3 normal, vec3 view, vec3 cellColor, float numberOfColors)
{

float res = max(dot(normal, view),0.0);
res = ceil(res * numberOfColors) / numberOfColors;
return cellColor*vec3(res);

}

void main()
{

…
FragColor=vec4(celShading(normal,view,vec3(1),3),1);

}



F5…
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• … cel shading!



Notes

• The higher 𝑛𝑢𝑚 the more shading
(right 20; bottom 5)
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Gamma Correction
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Introduction

• Computed final pixel colors have to displayed on a monitor 

• In the old days, most monitors were cathode-ray tube (CRT) monitors 

• These had the physical property that twice the input voltage did not 
result in twice the amount of brightness 

• Doubling the input voltage resulted in a brightness equal to a power 
relationship of roughly 2.2 also known as the gamma of a monitor
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Introduction

• This, closely match how human beings measure brightness 
(brightness is also displayed with a similar (inverse) power 
relationship) 
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Introduction

• Human eyes prefer to see brightness colors according to the top scale 

• Monitors (still today) use a power relationship for displaying output 
colors so that the original physical brightness colors are mapped to 
the non-linear brightness colors in the top scale
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Introduction

• Non-linear mapping of monitors make the brightness look better, but 
there is one issue: color and brightness options are based on what we 
perceive from the monitor and thus all the options are actually non-
linear brightness/color options

• Take a look at the graph on the next slide:
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Introduction
• Dotted line: color/light values in linear space; solid 

line: color space that monitors the display 
• Double a color in linear space results in a double 

value 
• E.g., double light’s color vector  𝑙 = (0.5, 0.0, 0.0)

in linear space become (1.0, 0.0, 0.0)
• Colors still have to output to the monitor display, 

the original color gets displayed on the monitor as 
(0.218, 0.0, 0.0)

• Issue: double the dark-red light in linear space, it 
becomes more than 4.5 times as bright on the 
monitor!
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Introduction
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• Up until now, assumed we were working in linear space

• Working in the color space defined by the monitor’s output color 
space → colors and lighting weren’t physically correct

• Thus, we (and artists) generally set lighting values way brighter than 
they should be (because monitor darkens them) →makes most 
linear-space calculations incorrect 

• Note, the monitor graph and the linear graph both start and end up at 
the same position; intermediate colors get darkened by the display



Introduction
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• Colors configured based on the monitor’s display → all intermediate 
(lighting) calculations in linear-space are physically incorrect 

• Becomes more and more obvious as more advanced lighting 
algorithms are used, as you can see in the image below:



Gamma Correction
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• Idea of gamma correction is to apply the inverse of 
the monitor’s gamma to the final output color

• See another dashed line that is the inverse of the 
monitor’s gamma curve 

• Multiply linear output colors by this inverse gamma 
curve (brighter), colors displayed on the monitor, 
gamma curve is applied → colors become linear 

• Basically we make the intermediate colors brighter 
so that as soon as the monitor darkens them, it 
balances all out

 

 

    

   

     

     

     

           

           

   

           

       



Gamma Correction
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• E.g., dark-red color (0.5, 0.0, 0.0), apply the 
gamma correction curve to the color value 

• Linear colors displayed by a monitor roughly 
scaled to a power of 2.2, inverse is a scaling by 
a power of 1/2.2 

• The gamma-corrected dark-red color thus 
becomes (0.5, 0.0, 0.0)1/2.2 ≈ (0.73, 0.0, 0.0)

• Resulting color is displayed on monitor as 
0.73, 0.0, 0.0 2.2 = 0.5, 0.0, 0.0

 

 

    

   

     

     

     

           

           

   

           

       



Gamma Correction

2.2 is a default gamma value that roughly estimates the average 
gamma of most displays 

The color space as a result of this gamma of 2.2 is called the sRGB 
color space

Each monitor has their own gamma curves, but a gamma value of 2.2 
gives good results on most monitors 

For this reason, games often allow players to change the game’s 
gamma setting as it varies slightly per monitor
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Gamma Correction
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• Two ways to apply gamma correction:
• Using OpenGL’s built-in sRGB framebuffer support
• Doing the gamma correction manually in the fragment shaders

• First option easiest, but less control 

• By enabling GL_FRAMEBUFFER_SRGB, subsequent drawing 
commands gamma correct colors from the sRGB color space (before 
store color buffer)

• sRGB color space roughly corresponds to gamma of 2.2

• After enabling perform gamma correction after each fragment shader 
run to all subsequent framebuffers, including the default framebuffer



Gamma Correction
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• Enabling GL_FRAMEBUFFER_SRGB:

• Rendered images will be gamma corrected 
• Note, with these approaches gamma correction (also) transforms the 

colors from linear space to non-linear space → important to do gamma 
correction at the last and final step 

• Gamma-correct colors before the final output → all subsequent operations 
on those colors will operate on incorrect values 

• E.g., if you use multiple framebuffers you probably want intermediate 
results passed in between framebuffers to remain in linear-space and only 
have the last framebuffer apply gamma correction before being sent to the 
monitor

glEnable(GL_FRAMEBUFFER_SRGB);



Gamma Correction
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• Second approach more work, but control over the gamma operations

• Apply gamma correction at the end of each relevant fragment shader, 
colors gamma corrected before being sent out to the monitor:

void main()
{           

…
float gamma = 2.2;
FragColor.rgb = pow(FragColor.rgb, vec3(1.0/gamma));

}



Gamma Correction
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• Issue: to be consistent have to apply gamma correction to each 
relevant fragment shader (a dozen fragment shaders for multiple 
objects → add the gamma correction to each of these shaders) 

• Easier solution: post-processing stage and apply gamma correction on 
the post-processed quad as a final step (do once)

• These one-liners represent the technical implementation of gamma 
correction 

• Not all too impressive, but there are a few extra things you have to 
consider when doing gamma correction



sRGB Textures
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Introduction
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• Monitors always display colors with gamma applied in sRGB space,  
whenever you draw, edit or paint a picture on your computer you are 
picking colors based on what you see on the monitor 

• This effectively means all the pictures you create or edit are not in 
linear space, but in sRGB space, e.g., doubling a dark-red color on 
your screen based on your perceived brightness, does not equal 
double the red component



Introduction
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• As a result, texture artists create textures 
in sRGB (if we use those textures in the 
rendering, we have to take this into 
account)

• Before we applied gamma correction this 
was not an issue (textures looked good in 
sRGB, without gamma correction, also 
worked in sRGB  → textures displayed 
exactly as they are which was fine)

• Now, displaying everything in linear space 
→ texture colors will be off

Gamma correction off

Gamma correction on



sRGB Textures

46

• To fix this, make sure texture artists work in linear space 

• Easier to work in sRGB this is probably not the preferred solution

• The other solution: re-correct or transform these sRGB textures back 
to linear space:

float gamma = 2.2;
vec3 diffuseColor = pow(texture(diffuse, texCoords).rgb, vec3(gamma));



sRGB Textures
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• For each texture in sRGB is troublesome 

• OpenGL gives us yet another solution to our problems by giving us 
the GL_SRGB and GL_SRGB_ALPHA internal texture formats.



sRGB Textures
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• If creating a texture with any of these two sRGB texture formats, it 
will automatically correct the colors to linear-space as soon as we use 
them

• We can specify a texture as an sRGB texture as follows:

• To include alpha components specify the texture’s internal format as 
GL_SRGB_ALPHA

glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB, width, height, 0, GL_RGB, 
GL_UNSIGNED_BYTE, image);



sRGB Textures
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• Careful when specifying textures in sRGB (not all textures in sRGB)

• Textures for coloring objects (diffuse textures) mostly in sRGB 

• Textures for retrieving lighting parameters, e.g., specular and normal 
maps mostly in linear space (configure these as sRGB textures →
lighting will break down)

• Diffuse textures specified as sRGB textures get the expected visual 
output, but this time everything is gamma corrected only once



Attenuation
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Attenuation
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• Lighting attenuates closely inversely proportional to the squared 
distance from a light source:

float attenuation = 1.0 / (distance * distance);



Attenuation
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• This attenuation effect is always way too strong (giving lights a small 
radius that didn’t look physically right) 

• Thus, other attenuation functions were used (see Lighting lecture):

float attenuation = 1.0 / distance;



F5…
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• … nice!

Gamma correction off -
Linear

Gamma correction off -
Quadratic

Gamma correction on -
Linear

Gamma correction on -
Quadratic



Attenuation
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• Cause: light attenuation change brightness, (not visualizing scene in 
linear space → chose the attenuation functions that looked best on 
our monitor, but weren’t physically correct) 

• Squared attenuation function without gamma correction effectively 
becomes: (1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2)2.2 (displayed on a monitor) 

• Creates larger attenuation effect without gamma correction

• Linear equivalent makes much more sense without gamma correction 
becomes: (1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2.2 (physical equivalent a lot more)



Attenuation

The more advanced attenuation function, we discussed in the lighting 
lecture is still useful in gamma corrected scenes as it gives much more 

control over the exact attenuation (but of course requires different 
parameters in a gamma corrected scene).
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Attenuation
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• Let’s create the scene where we can change between gamma 
correction, and the linear and quadratic function

• Add bools for those (change with key pressed)

bool gammaEnabled = false;
bool quaLin = false;
bool gammaKeyPressed = false;
bool quaLinKeyPressed = false;



Attenuation

57

• We will load one floor texture in sRGB and one in linear space:

// sRGB
glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB, width, height, 0, GL_RGB, 
GL_UNSIGNED_BYTE, data);
…
// RGB
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, 
GL_UNSIGNED_BYTE, data);



Attenuation
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• Check if space or L key was pressed:
void processInput(GLFWwindow *window)
{

…
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS && !gammaKeyPressed)
{

gammaEnabled = !gammaEnabled;
gammaKeyPressed = true;

}
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_RELEASE)
{

gammaKeyPressed = false;
}

if (glfwGetKey(window, GLFW_KEY_L) == GLFW_PRESS && !quaLinKeyPressed)
{

quaLin = !quaLin;
quaLinKeyPressed = true;

}
if (glfwGetKey(window, GLFW_KEY_L) == GLFW_RELEASE)
{

quaLinKeyPressed = false;
}

}



Attenuation
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• Set options as uniforms to the shader:

shader.setInt("gamma", gammaEnabled);
shader.setInt("quaLin", quaLin); 



Attenuation
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• Change attenuation and gamma option (fragment shader):

…
float attenuation = 1.0/ (quaLin ? distance * distance : distance);
diffuse *= attenuation;
specular *= attenuation;
…
if(gamma)

color = pow(color, vec3(1.0/2.2));
FragColor = vec4(color, 1.0);



Summary
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• Gamma correction allows to work/visualize renders in linear space 

• Linear space makes sense in the physical world, most physical 
equations now actually give good results like real light attenuation 

• The more advanced lighting becomes, the easier it is to get good 
looking (and realistic) results with gamma correction 

• That is also why it’s advised to only really tweak your lighting 
parameters as soon as you have gamma correction in place



Questions???
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