
Computer Graphics II
- Framebuffer

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• So far several types of screen buffers:
• Color buffer (write color values)

• Depth buffer (write depth information)

• Stencil buffer (allows discarding fragments)

• The combination of these buffers is called a framebuffer

• OpenGL gives the flexibility to define own framebuffers (own color,
depth and stencil buffer)

2

Introduction

• Rendering operations done on top of the render buffers attached to
the default framebuffer

• Default framebuffer is automatically created and configured (GLFW
does this for us)

• Creating own framebuffer → get an additional means to render to

• Framebuffer allows, e.g., to create mirrors, post-processing effects

3

Creating a Framebuffer

4

Introduction

• Like any other object, create a framebuffer object (FBO) with
glGenFramebuffers:

• Usage functions similar to all the other object’s:
• 1. Create a FBO

• 2. Bind it as the active framebuffer

• 3. Do some operations and unbind the framebuffer

5

unsigned int framebuffer;
glGenFramebuffers(1, &framebuffer);

glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);

Introduction

• By binding to the GL_FRAMEBUFFER target all the next read and write
framebuffer operations will affect the currently bound framebuffer

• Possible to bind a framebuffer to a read or write target (binding
GL_READ_FRAMEBUFFER, GL_DRAW_FRAMEBUFFER)

• GL_READ_FRAMEBUFFER read operations, e.g., glReadPixels

• GL_DRAW_FRAMEBUFFER write operations, e.g., rendering, clearing

• Mostly bind to both with GL_FRAMEBUFFER

6

Introduction

• Framebuffer is not complete

• For completion the following requirements have to be satisfied:
• Have to attach at least one buffer (color, depth or stencil buffer)

• At least one color attachment

• All attachments should be complete as well (reserved memory)

• Each buffer should have the same number of samples

7

Introduction

• Need to create some kind of attachment for the framebuffer

• After completing all requirements, check the status with
glCheckFramebufferStatus(GL_FRAMEBUFFER):

8

if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
cout << "ERROR::FRAMEBUFFER:: Framebuffer is not complete!" << endl;

Introduction

• All subsequent rendering operations will now render to the
attachments of the currently bound framebuffer

• Our framebuffer is not the default framebuffer → rendering
commands no impact on the visual output

• Therefore, it is called off-screen rendering (rendering to a different
framebuffer)

• Ensure all rendering operations have a visual impact, make the
default framebuffer active again by binding to 0:

9

glBindFramebuffer(GL_FRAMEBUFFER, 0);

Introduction

• After all framebuffer operations, delete the framebuffer object:

• Before the completeness check is executed, need to attach one or
more attachments to the framebuffer

• An attachment is a memory location that can act as a buffer for the
framebuffer

• When creating an attachment we have two options to take: textures
or renderbuffer objects

10

glDeleteFramebuffers(1, &fbo);

Texture Attachments

11

Introduction

• Attaching a texture to a framebuffer → rendering commands write to
the texture (like a normal color/depth or stencil buffer)

• Advantage: rendering operations stored as a texture, that can used in
the shaders

• Creating a texture for a framebuffer is roughly the same as a normal
texture:

12

unsigned int textureColorbuffer;
glGenTextures(1, &textureColorbuffer);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB,
GL_UNSIGNED_BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Introduction

• Main differences: set the dimensions equal to the screen size (not
required) and pass NULL as the texture’s data parameter

• For this texture, allocating memory only (not actually filling it)

• Filling happens as soon as we render to the framebuffer

• Also note: we do not care about wrapping/mipmapping (won’t
needing those in most cases)

13

unsigned int textureColorbuffer;
glGenTextures(1, &textureColorbuffer);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB,
GL_UNSIGNED_BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Render the screen to a smaller/larger texture? → Call glViewport
again (before rendering to your framebuffer) with the new

dimensions, otherwise only a small part of the texture or screen
would be drawn onto the texture

14

glFrameBufferTexture2D

• Finally, attach the texture to the framebuffer:

• The glFrameBufferTexture2D has the following parameters:
• Target: the targeting framebuffer type (draw, read or both).

• Attachment: the type of attachment, here a color attachment (several
attachments possible)

• Textarget: the type of the texture to attach

• Texture: the actual texture to attach

• Level: the mipmap level (keep this at 0)

15

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
texture, 0);

Attachments

• Aside from the color attachments: depth, stencil texture to FBO

• Attach a depth attachment: GL_DEPTH_ATTACHMENT
• Note that the texture’s format and internalformat type:

GL_DEPTH_COMPONENT to reflect the depth buffer’s storage format

• Attach a stencil buffer: GL_STENCIL_ATTACHMENT
• Texture’s formats as GL_STENCIL_INDEX

16

Attachments

• Possible to attach a depth and a stencil buffer as a single texture

• Each 32 bit value of the texture then consists for 24 bits of depth and
8 bits of stencil information

• Use GL_DEPTH_STENCIL_ATTACHMENT type and configure the
texture’s formats to contain combined depth and stencil values:

17

glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, SCR_WIDTH, SCR_HEIGHT, 0,
GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_TEXTURE_2D, texture, 0);

Renderbuffer Object Attachments

18

Renderbuffer Object

• Renderbuffer objects (RBOs) are a possible type of framebuffer
attachments

• Like a texture image, an RBO is an actual buffer (an array of bytes,
integers, pixels,...)

• RBO advantage that it stores its data in OpenGL’s native rendering
format → optimized for off-screen rendering to a framebuffer

19

Renderbuffer Object

• RBOs store render data directly into their buffer without texture-
specific formats conversions → faster as a writeable storage medium

• However, RBOs are generally write-only, thus you cannot read from
them (like with texture-access)

• Possible to read via glReadPixels from the currently bound
framebuffer, but not directly from the attachment itself

20

Renderbuffer Object

• Because their data is already in its native format → quite fast when
writing data or copying their data to other buffers

• Operations like switching buffers are thus quite fast when using RBOs
(glfwSwapBuffers implemented with RBOs: write to a renderbuffer
image, and swap to the other one at the end)

• Renderbuffer objects are perfect for these kind of operations

21

Renderbuffer Object

• Creating an RBO looks similar to the framebuffer’s code:

• Similarly bind the RBO so all subsequent renderbuffer operations
affect the current rbo:

22

unsigned int rbo;
glGenRenderbuffers(1, &rbo);

glBindRenderbuffer(GL_RENDERBUFFER, rbo);

Renderbuffer Object

• RBOs are generally write-only, often used as depth and stencil
attachments (mostly do not need to read values from them, but care
about depth and stencil testing)

• Need depth and stencil values for testing, but do not need to sample
these values → RBO suits this perfectly

• Not sampling from these buffers → RBO is generally preferred since
it’s more optimized

23

Renderbuffer Object

• Creating a depth and stencil renderbuffer object is done by calling the
glRenderbufferStorage function:

• Creating a RBO is similar to texture objects, difference is that this
object is specifically designed to be used as an image, instead of a
general purpose data buffer like a texture

• Here GL_DEPTH24_STENCIL8 is used as the internal format, which
holds both the depth and stencil buffer with 24 and 8 bits

24

glRenderbufferStorage(GL_RENDERBUFFER,GL_DEPTH24_STENCIL8,SCR_WIDTH,SCR_HEIGHT);

Renderbuffer Object

• Now, attach the renderbuffer object:

• RBOs provide some optimizations in framebuffer projects, but it is
important when to use RBOs and when to use textures

• General rule: never need to sample data from a specific buffer → use
an RBO

• Sample data from a specific buffer like colors or depth values → use a
texture attachment

• Performance-wise it doesn’t have an enormous impact though

25

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, rbo);

Rendering to a Texture

26

Rendering to a Texture

• Now it’s time to render the scene into a color texture attached to a
framebuffer object

• Then draw this texture over a simple quad that spans the whole
screen → visual output exactly the same as without a framebuffer

• Why is this useful, we will see ...

27

Rendering to a Texture

• Create an actual framebuffer object and bind it:

28

unsigned int framebuffer;
glGenFramebuffers(1, &framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);

Rendering to a Texture

• Next, create a texture image and attach it as a color attachment to
the framebuffer

• Set the dimensions equal to the width and height of the window and
keep its data uninitialized:

29

unsigned int textureColorbuffer;
glGenTextures(1, &textureColorbuffer);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB,
GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
textureColorbuffer, 0);

Rendering to a Texture

• Want to make sure OpenGL is able to do depth testing (and optionally
stencil testing) → add a depth (and stencil) attachment to the
framebuffer as well

• Only for sampling the color buffer and not the other buffers → create
an RBO (remember it is a good choice…)

30

Rendering to a Texture

• Create an RBO with a depth and stencil attachment

• Set its internal format to GL_DEPTH24_STENCIL8:

• Once enough memory for the RBO is allocated: unbind it

31

unsigned int rbo;
glGenRenderbuffers(1, &rbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, SCR_WIDTH,
SCR_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Rendering to a Texture

• Create an RBO with a depth and stencil attachment

• Set its internal format to GL_DEPTH24_STENCIL8:

• Once enough memory for the RBO is allocated: unbind it

32

unsigned int rbo;
glGenRenderbuffers(1, &rbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, SCR_WIDTH,
SCR_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Rendering to a Texture

• Then, attach the RBO to the depth and stencil attachment:

• Also check if framebuffer is complete:

• Unbind the framebuffer to make sure to not rendering to the wrong
framebuffer

33

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, rbo);

if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
cout << "ERROR::FRAMEBUFFER:: Framebuffer is not complete!" << endl;

Rendering to a Texture

• Altogether:

34

unsigned int framebuffer;
glGenFramebuffers(1, &framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);

unsigned int textureColorbuffer;
glGenTextures(1, &textureColorbuffer);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureColorbuffer, 0);

unsigned int rbo;
glGenRenderbuffers(1, &rbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, SCR_WIDTH, SCR_HEIGHT);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, rbo);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)

cout << "ERROR::FRAMEBUFFER:: Framebuffer is not complete!" << endl;
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Rendering to a Texture

• Now need to render to the framebuffer’s buffers instead of the
default framebuffers: bind to the framebuffer object

• Subsequent rendering commands will influence the currently bound
framebuffer

• Depth and stencil operations will also read from the currently bound
framebuffer’s depth and stencil attachments (if available)

• If we omit a depth buffer, depth testing operations will no longer
work (because there’s not a depth buffer present in the currently
bound framebuffer)

35

Rendering to a Texture

• Draw the scene to a single texture:
1. Render the scene as usual with the new active framebuffer bound

2. Bind to the default framebuffer

3. Draw a quad that spans the entire screen with the new framebuffer’s color
buffer as its texture

• We draw the same scene as in the previous lecture

36

Quad’s Shader

• To draw the quad create a new set of simple shaders

• We use vertex coordinates as normalized device coordinates (NDCs)

37

float quadVertices[] = {
// positions // texCoords
-1.0f, 1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f,

-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f

};

Quad’s Shader

• The vertex shader looks like this:

38

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec2 aTexCoords;

out vec2 TexCoords;

void main()
{

TexCoords = aTexCoords;
gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0);

}

Quad’s Shader

• The fragment shader:

39

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D screenTexture;

void main()
{

vec3 col = texture(screenTexture, TexCoords).rgb;
FragColor = vec4(col, 1.0);

}

Render

• Render iteration of the framebuffer procedure:

40

// first pass
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
glClearColor(1.f, 1.f, 1.f, 1.f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
DrawScene();
// second pass
glBindFramebuffer(GL_FRAMEBUFFER, 0); // back to default
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
screenShader.use();
glBindVertexArray(quadVAO);
glDisable(GL_DEPTH_TEST);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glDrawArrays(GL_TRIANGLES, 0, 6);

Notes

• Each framebuffer has its own set of buffers, we want to clear each of
those buffers with the appropriate bits set by calling glClear

• When drawing the quad, disable depth testing (depth testing is not
important here)

• Enable depth testing again when we draw the normal scene though

41

F5…

• … it works

42

F5…

• This time, we rendered the
output on a simple quad

• So what was the use of this
again?

• Now access freely of each of the
pixels of the completely rendered
scene → create some interesting
effects in the fragment shader
(post-processing effects)

43

Post-Processing

44

Post-Processing

• Now we can start to create some interesting effects by manipulating
the texture data

• Now, we want to apply popular post-processing effects

• Let’s start with one of the simplest post-processing effects

45

Inversion

• With access to each of the colors of the render output so it’s not so
hard to return the inverse of these colors in the fragment shader

• We’re taking the color of the screen texture and inverse it by
subtracting it from 1.0:

46

void main()
{

vec3 col = texture(screenTexture, TexCoords).rgb;
FragColor = vec4(1.0 - col, 1.0);

}

F5…

• … inversion is a simple post-
processing effect

• Scene has all its colors inversed with
a single line of code in the fragment
shader

47

Grayscale

• Now, remove all colors from → let us grayscaling the entire image

• An easy way: average the color components:

48

void main()
{

vec3 col = texture(screenTexture, TexCoords).rgb;
float average = (col.r + col.g + col.b) / 3.0;
FragColor = vec4(average, average, average, 1.0);

}

F5…

• Creates good results, but the human
eye tends to be more sensitive to
green colors and the least to blue
→ for physically accurate results use
weighted channels

49

Grayscale

• We use weighted channels for grayscaling:

50

void main()
{

vec3 col = texture(screenTexture, TexCoords).rgb;
float average = 0.2126 * col.r + 0.7152 * col.g + 0.0722 * col.b;
FragColor = vec4(average, average, average, 1.0);

}

F5…

• … difference is hard to notice, but
with more complicated scenes, a
weighted grayscaling effect tends to
be more realistic

51

Kernel Effects

• Another advantage is that we can sample color values from other
parts of the texture

• For example: take a small area around the current texture coordinate
and sample multiple texture values around the current texture value

• We can then create interesting effects by combining them in creative
ways

52

Kernel Effects

• A kernel (or convolution matrix) is a small matrix-like array of values
centered on the current pixel that multiplies surrounding pixel values
by its kernel values and adds them all together to form a single value

• Basically add a small offset to the texture coordinates in surrounding
directions of the current pixel and combine the results based on the
kernel

• Example of a kernel:

53

Kernel Effects

• This kernel takes 8 surrounding pixel values and multiplies them by 2
and the current pixel by -15

• Basically it multiplies the surrounding pixels by a weight determined
in the kernel and balances the result by multiplying the current pixel
by a large negative weight

54

Sum up to 1?

Most kernels sum up to 1 if you add all the weights together.

If they don’t add up to 1 it means that the resulting texture color ends
brighter or darker than the original texture value.

55

Kernel Effects

• Kernels useful for post-processing

• We have to adapt the fragment shader to actually support kernels

• We make the assumption that each kernel is a 3x3 kernel (which most
kernels are)

56

Kernel Effects

57

const float offset = 1.0 / 300.0;
void main()
{
vec2 offsets[9] = vec2[](vec2(-offset, offset), // top-left

vec2(0.0f,offset), // top-center
vec2(offset, offset), // top-right
vec2(-offset, 0.0f), // center-left
vec2(0.0f,0.0f), // center-center
vec2(offset, 0.0f), // center-right
vec2(-offset, -offset), // bottom-left
vec2(0.0f, -offset), // bottom-center
vec2(offset, -offset) // bottom-right

);

float kernel[9] = float[](
-1, -1, -1,
-1, 9, -1,
-1, -1, -1
);

Kernel Effects

58

vec3 sampleTex[9];
for(int i = 0; i < 9; i++)

sampleTex[i] = vec3(texture(screenTexture, TexCoords.st + offsets[i]));

vec3 col = vec3(0.0);
for(int i = 0; i < 9; i++)

col += sampleTex[i] * kernel[i];

FragColor = vec4(col, 1.0);
}

F5…

• … this sharpen kernel looks like this:

59

Blur

• A kernel that creates a blur effect is defined as follows

60

Blur

• All values add up to 16, so divide each value by 16 (otherwise result in
an extremely bright color)

• The resulting kernel array would then become:

61

float kernel[9] = float[](
1.0 / 16, 2.0 / 16, 1.0 / 16,
2.0 / 16, 4.0 / 16, 2.0 / 16,
1.0 / 16, 2.0 / 16, 1.0 / 16
);

F5…

• … such a blur effect creates
interesting possibilities (drunk
effects, not wearing glasses, …)

62

Edge Detection

• An edge-detection kernel that is similar to the sharpen kernel:

63

F5…

• … highlights all edges and darkens
the rest

• Used in tools like Photoshop
(graphic card’s ability to process
fragments in parallel, allows to
manipulate images on a per-pixel
basis in real-time with relative ease)

• Image-editing tools therefore tend
to use graphics cards more often for
image-processing

64

Multiple Color-Attachments*

65

Multiple Color-Attachments

• Goal:

• Apply blur effect to objects

• Keep one box as the focus object

66

Multiple Color-Attachments

• First, we need to add another texture color buffer:

67

unsigned int framebuffer;
glGenFramebuffers(1, &framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
unsigned int textureColorbuffer;
glGenTextures(1, &textureColorbuffer);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureColorbuffer, 0);

unsigned int textureColorbuffer2;
glGenTextures(1, &textureColorbuffer2);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB,
GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D,
textureColorbuffer2, 0);

Multiple Color-Attachments

• Define outputs into which the fragment shader will be written

68

GLenum color_attachments[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, color_attachments);

Multiple Color-Attachments

• Define focus object with uniform int ‚focus‘

69

glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
glEnable(GL_DEPTH_TEST);
glClearColor(1.f, 1.f, 1.f, 1.f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shader.use();
glm::mat4 model = glm::mat4(1.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
shader.setMat4("view", view);
shader.setMat4("projection", projection);

shader.setInt("focus", 0);
// cubes
glBindVertexArray(cubeVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, -1.0f));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 0.0f));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
// floor
glBindVertexArray(planeVAO);
glBindTexture(GL_TEXTURE_2D, floorTexture);
shader.setMat4("model", glm::mat4(1.0f));
glDrawArrays(GL_TRIANGLES, 0, 6);

model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.5f, 0.0f, -0.5f));
shader.setMat4("model", model);
shader.setInt("focus", 1);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Multiple Color-Attachments

• In the fragment shader output of two colors (two attachments)

70

#version 330 core

layout (location = 0) out vec4 FragColor;
layout (location = 1) out vec4 FragColor2;

in vec2 TexCoords;
uniform int focus;
uniform sampler2D texture1;

void main()
{

FragColor = texture(texture1, TexCoords);
if(focus==1)

FragColor2 = texture(texture1, TexCoords);
}

Multiple Color-Attachments

• Left FragColor, Right FragColor2

• Black regions, because we still have the same depth test, it passes
and replace the color in FragColor2

71

Multiple Color-Attachments

• Now it is time to process both textures on the quad

• Add the second texture:

72

screenShader.use();
screenShader.setInt("screenTexture", 0);
screenShader.setInt("screenTexture2", 1);

Multiple Color-Attachments

• In the render loop bind both textures:

73

screenShader.use();
glBindVertexArray(quadVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer2);
glDrawArrays(GL_TRIANGLES, 0, 6);

Multiple Color-Attachments

• Process them in the fragment shader

74

uniform sampler2D screenTexture;
uniform sampler2D screenTexture2;
…
void main(){
…
vec3 sampleTex[9];
for(int i = 0; i < 9; i++)

sampleTex[i] = vec3(texture(screenTexture, TexCoords.st + offsets[i]));
vec3 col = vec3(0.0);

for(int i = 0; i < 9; i++)
col += sampleTex[i] * kernel[i] * 0.75;

vec3 col2 = vec3(texture(screenTexture2, TexCoords.st));
if(all(col2 == vec3(0)))

FragColor = vec4(col, 1.0);
else

FragColor = vec4(col2, 1.0);
}

F5…

• … nice

75

Questions???

76

