Computer Graphics |l

- Framebufter

Kai Lawonn

Infroduction

 So far several types of screen buffers:

e Color buffer (write color values)
* Depth buffer (write depth information)
 Stencil buffer (allows discarding fragments)

* The combination of these buffers is called a framebuffer

* OpenGL gives the flexibility to define own framebuffers (own color,
depth and stencil buffer)

Infroduction

* Rendering operations done on top of the render buffers attached to
the default framebuffer

* Default framebuffer is automatically created and configured (GLFW
does this for us)

* Creating own framebuffer = get an additional means to render to
* Framebuffer allows, e.g., to create mirrors, post-processing effects

Creating a Framebufter

Infroduction

* Like any other object, create a framebuffer object (FBO) with
glGenFramebuffers:

unsigned int framebuffer;
glGenFramebuffers(1, &framebuffer);

e Usage functions similar to all the other object’s:
* 1. Create a FBO
e 2. Bind it as the active framebuffer
* 3. Do some operations and unbind the framebuffer

glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);

Infroduction

* By binding to the GL_ FRAMEBUFFER target all the next read and write
framebuffer operations will affect the currently bound framebuffer

 Possible to bind a framebuffer to a read or write target (binding
GL_READ FRAMEBUFFER, GL_ DRAW_FRAMEBUFFER)

* GL_READ_FRAMEBUFFER read operations, e.g., glReadPixels
* GL_ DRAW_FRAMEBUFFER write operations, e.g., rendering, clearing
* Mostly bind to both with GL_ FRAMEBUFFER

Infroduction

* Framebuffer is not complete

* For completion the following requirements have to be satisfied:
* Have to attach at least one buffer (color, depth or stencil buffer)
* At least one color attachment
* All attachments should be complete as well (reserved memory)
* Each buffer should have the same number of samples

Infroduction

* Need to create some kind of attachment for the framebuffer

* After completing all requirements, check the status with
glCheckFramebufferStatus(GL_FRAMEBUFFER):

if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
cout << "ERROR::FRAMEBUFFER:: Framebuffer is not complete!" << endl;

Infroduction

* All subsequent rendering operations will now render to the
attachments of the currently bound framebuffer

* Our framebuffer is not the default framebuffer 2 rendering
commands no impact on the visual output

* Therefore, it is called off-screen rendering (rendering to a different
framebuffer)

* Ensure all rendering operations have a visual impact, make the
default framebuffer active again by binding to O:

glBindFramebuffer (GL_FRAMEBUFFER, ©);

Infroduction

 After all framebuffer operations, delete the framebuffer object:

glDeleteFramebuffers(l, &fbo);

* Before the completeness check is executed, need to attach one or
more attachments to the framebuffer

* An attachment is a memory location that can act as a buffer for the
framebuffer

 When creating an attachment we have two options to take: textures
or renderbuffer objects

Texture Atftachments

Infroduction

 Attaching a texture to a framebuffer = rendering commands write to
the texture (like a normal color/depth or stencil buffer)

* Advantage: rendering operations stored as a texture, that can used in
the shaders

* Creating a texture for a framebuffer is roughly the same as a normal
texture:

unsigned int textureColorbuffer;

glGenTextures(1l, &textureColorbuffer);

glBindTexture(GL_TEXTURE 2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, ©, GL_RGB, SCR_WIDTH, SCR_HEIGHT, ©, GL_RGB,
GL_UNSIGNED BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE 2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Infroduction

* Main differences: set the dimensions equal to the screen size (not
required) and pass NULL as the texture’s data parameter

* For this texture, allocating memory only (not actually filling it)
* Filling happens as soon as we render to the framebuffer

* Also note: we do not care about wrapping/mipmapping (won’t
needing those in most cases)

unsigned int textureColorbuffer;

glGenTextures(1l, &textureColorbuffer);

glBindTexture(GL_TEXTURE 2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, ©, GL_RGB, SCR_WIDTH, SCR_HEIGHT, ©, GL_RGB,
GL_UNSIGNED BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE 2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Render the screen to a smaller/larger texture? - Call glViewport
again (before rendering to your framebuffer) with the new
dimensions, otherwise only a small part of the texture or screen
would be drawn onto the texture

14

glFrameBufferTexture2D

* Finally, attach the texture to the framebuffer:

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D,
texture, 0);

* The glFrameBufferTexture2D has the following parameters:
e Target: the targeting framebuffer type (draw, read or both).

e Attachment: the type of attachment, here a color attachment (several
attachments possible)

» Textarget: the type of the texture to attach
» Texture: the actual texture to attach
e Level: the mipmap level (keep this at 0)

Attfachments

* Aside from the color attachments: depth, stencil texture to FBO
e Attach a depth attachment: GL_DEPTH_ATTACHMENT

* Note that the texture’s format and internalformat type:
GL_DEPTH_COMPONENT to reflect the depth buffer’s storage format

 Attach a stencil buffer: GL_STENCIL_ATTACHMENT
* Texture’s formats as GL_STENCIL_INDEX

Attfachments

* Possible to attach a depth and a stencil buffer as a single texture

* Each 32 bit value of the texture then consists for 24 bits of depth and
8 bits of stencil information

e Use GL_DEPTH_STENCIL _ATTACHMENT type and configure the
texture’s formats to contain combined depth and stencil values:

glTexImage2D(GL_TEXTURE 2D, ©, GL _DEPTH24 STENCIL8, SCR_WIDTH, SCR_HEIGHT, 0,
GL_DEPTH_STENCIL, GL_UNSIGNED INT 24 8, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL DEPTH STENCIL ATTACHMENT,
GL_TEXTURE_ 2D, texture, 9);

Renderbuftfer Object Attachments

Renderbutfer Object

* Renderbuffer objects (RBOs) are a possible type of framebuffer
attachments

* Like a texture image, an RBO is an actual buffer (an array of bytes,
integers, pixels,...)

 RBO advantage that it stores its data in OpenGL’s native rendering
format = optimized for off-screen rendering to a framebuffer

Renderbutfer Object

* RBOs store render data directly into their buffer without texture-
specific formats conversions = faster as a writeable storage medium

 However, RBOs are generally write-only, thus you cannot read from
them (like with texture-access)

* Possible to read via glReadPixels from the currently bound
framebuffer, but not directly from the attachment itself

Renderbutfer Object

* Because their data is already in its native format = quite fast when
writing data or copying their data to other buffers

* Operations like switching buffers are thus quite fast when using RBOs
(glfwSwapBuffers implemented with RBOs: write to a renderbuffer
image, and swap to the other one at the end)

* Renderbuffer objects are perfect for these kind of operations

Renderbutfer Object

* Creating an RBO looks similar to the framebuffer’s code:

unsigned int rbo;
glGenRenderbuffers(1l, &rbo);

e Similarly bind the RBO so all subsequent renderbuffer operations
affect the current rbo:

glBindRenderbuffer(GL_RENDERBUFFER, rbo);

Renderbutfer Object

* RBOs are generally write-only, often used as depth and stencil
attachments (mostly do not need to read values from them, but care
about depth and stencil testing)

* Need depth and stencil values for testing, but do not need to sample
these values = RBO suits this perfectly

* Not sampling from these buffers = RBO is generally preferred since
it’s more optimized

Renderbutfer Object

* Creating a depth and stencil renderbuffer object is done by calling the
glRenderbufferStorage function:

glRenderbufferStorage (GL_RENDERBUFFER,GL_DEPTH24_ STENCILS8,SCR_WIDTH,SCR_HEIGHT);

* Creating a RBO is similar to texture objects, difference is that this
object is specifically designed to be used as an image, instead of a
general purpose data buffer like a texture

* Here GL_DEPTH24 STENCILS8 is used as the internal format, which
holds both the depth and stencil buffer with 24 and 8 bits

Renderbutfer Object

* Now, attach the renderbuffer object:
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL ATTACHMENT,
GL_RENDERBUFFER, rbo);

* RBOs provide some optimizations in framebuffer projects, but it is
important when to use RBOs and when to use textures

* General rule: never need to sample data from a specific buffer =2 use
an RBO

» Sample data from a specific buffer like colors or depth values = use a
texture attachment

* Performance-wise it doesn’t have an enormous impact though

Rendering to a Texture

Rendering to a Texture

* Now it’s time to render the scene into a color texture attached to a
framebuffer object

* Then draw this texture over a simple quad that spans the whole
screen -2 visual output exactly the same as without a framebuffer

* Why is this useful, we will see ...

Rendering to a Texture

* Create an actual framebuffer object and bind it:

unsigned int framebuffer;
glGenFramebuffers(l, &framebuffer);
glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);

Rendering to a Texture

* Next, create a texture image and attach it as a color attachment to
the framebuffer

* Set the dimensions equal to the width and height of the window and
keep its data uninitialized:

unsigned int textureColorbuffer;

glGenTextures (1, &textureColorbuffer);

glBindTexture(GL_TEXTURE_ 2D, textureColorbuffer);
glTexImage2D(GL_TEXTURE_2D, @, GL_RGB, SCR_WIDTH, SCR_HEIGHT, @, GL_RGB,
GL_UNSIGNED BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D,
textureColorbuffer, 0);

29

Rendering to a Texture

* Want to make sure OpenGL is able to do depth testing (and optionally
stencil testing) 2 add a depth (and stencil) attachment to the
framebuffer as well

* Only for sampling the color buffer and not the other buffers = create
an RBO (remember it is a good choice...)

Rendering to a Texture

* Create an RBO with a depth and stencil attachment
 Set its internal format to GL_DEPTH24 STENCILS:

unsigned int rbo;

glGenRenderbuffers(1l, &rbo);

glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24 STENCIL8, SCR_WIDTH,

SCR_HEIGHT);
glBindFramebuffer (GL_FRAMEBUFFER, 0);

* Once enough memory for the RBO is allocated: unbind it

Rendering to a Texture

* Create an RBO with a depth and stencil attachment
 Set its internal format to GL_DEPTH24 STENCILS:

unsigned int rbo;

glGenRenderbuffers(1l, &rbo);

glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24 STENCIL8, SCR_WIDTH,

SCR_HEIGHT);
glBindFramebuffer (GL_FRAMEBUFFER, 0);

* Once enough memory for the RBO is allocated: unbind it

Rendering to a Texture

* Then, attach the RBO to the depth and stencil attachment:

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ ATTACHMENT,
GL_RENDERBUFFER, rbo);

* Also check if framebuffer is complete:

if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
cout << "ERROR::FRAMEBUFFER:: Framebuffer is not complete!" << endl;

* Unbind the framebuffer to make sure to not rendering to the wrong
framebuffer

33

Rendering to a Texture

* Altogether:

unsigned int framebuffer;
glGenFramebuffers(1l, &framebuffer);
glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);

unsigned int textureColorbuffer;

glGenTextures(1, &textureColorbuffer);

glBindTexture(GL_TEXTURE_2D, textureColorbuffer);

glTexImage2D(GL_TEXTURE 2D, ©, GL RGB, SCR_WIDTH, SCR_HEIGHT, ©, GL RGB, GL_UNSIGNED BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL TEXTURE_MIN FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL COLOR_ATTACHMENTO, GL_TEXTURE 2D, textureColorbuffer, 0);

unsigned int rbo;
glGenRenderbuffers(1l, &rbo);
glBindRenderbuffer (GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24 STENCIL8, SCR_WIDTH, SCR_HEIGHT);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL DEPTH _STENCIL ATTACHMENT, GL_RENDERBUFFER, rbo);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
cout << "ERROR::FRAMEBUFFER:: Framebuffer is not complete!" << endl;
glBindFramebuffer (GL_FRAMEBUFFER, 9); 34

Rendering to a Texture

* Now need to render to the framebuffer’s buffers instead of the
default framebuffers: bind to the framebuffer object

e Subsequent rendering commands will influence the currently bound
framebuffer

* Depth and stencil operations will also read from the currently bound
framebuffer’s depth and stencil attachments (if available)

* If we omit a depth buffer, depth testing operations will no longer
work (because there’s not a depth buffer present in the currently
bound framebuffer)

Rendering to a Texture

* Draw the scene to a single texture:

1. Render the scene as usual with the new active framebuffer bound
2. Bind to the default framebuffer

3. Draw a quad that spans the entire screen with the new framebuffer’s color
buffer as its texture

* We draw the same scene as in the previous lecture

Quad'’s Shader

* To draw the quad create a new set of simple shaders
* We use vertex coordinates as normalized device coordinates (NDCs)

float quadVertices[] = {
// positions // texCoords
-1.0f, 1.0f, 0.0f, 1.0,
-1.0f, -1.0f, 0.0f, 0.0f,
l1.0f, -1.0f, 1.0f, 0.0,

-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 1.of, 0.0f,
1.0f, 1.0f, 1.of, 1.of

ig:

Quad'’s Shader

e The vertex shader looks like this:

#version 330 core
layout (location = @) in vec2 aPos;
layout (location = 1) in vec2 aTexCoords;

out vec2 TexCoords;

void main()

{

TexCoords = aTexCoords;
gl Position = vec4(aPos.x, aPos.y, 0.0, 1.0);

Quad'’s Shader

* The fragment shader:

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;
uniform sampler2D screenTexture;

void main()

{

vec3 col = texture(screenTexture, TexCoords).rgb;
FragColor = vec4(col, 1.0);

Render

* Render iteration of the framebuffer procedure:

// first pass

glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
glClearColor(1.f, 1.f, 1.f, 1.1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER _BIT);
glEnable(GL_DEPTH_TEST);

DrawScene();

// second pass

glBindFramebuffer (GL_FRAMEBUFFER, ©@); // back to default
glClearColor(l.0f, 1.0f, 1.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);

screenShader.use();

glBindVertexArray(quadVAO);
glDisable(GL_DEPTH_TEST);
glBindTexture(GL_TEXTURE_2D, textureColorbuffer);
glDrawArrays(GL_TRIANGLES, 0, 6);

40

Notes

* Each framebuffer has its own set of buffers, we want to clear each of
those buffers with the appropriate bits set by calling giClear

 When drawing the quad, disable depth testing (depth testing is not
important here)

* Enable depth testing again when we draw the normal scene though

FS5...

e ... it works

42

FS5...

* This time, we rendered the
output on a simple quad

 So what was the use of this
again?

* Now access freely of each of the
pixels of the completely rendered
scene —» create some interesting
effects in the fragment shader
(post-processing effects)

43

Post-Processing

Post-Processing

* Now we can start to create some interesting effects by manipulating
the texture data

* Now, we want to apply popular post-processing effects
* Let’s start with one of the simplest post-processing effects

Inversion

* With access to each of the colors of the render output so it’s not so
hard to return the inverse of these colors in the fragment shader

* We're taking the color of the screen texture and inverse it by
subtracting it from 1.0:

void main()

{

vec3 col = texture(screenTexture, TexCoords).rgb;
FragColor = vec4(1.0 - col, 1.90);

FS5...

e ... inversion is a simple post-
processing effect

a single line of code in the fragment
shader

47

Grayscale

* Now, remove all colors from =2 let us grayscaling the entire image
* An easy way: average the color components:

void main()

{
vec3 col = texture(screenTexture, TexCoords).rgb;
float average = (col.r + col.g + col.b) / 3.0;
FragColor = vec4(average, average, average, 1.0);

FS5...

* Creates good results, but the human
eye tends to be more sensitive to
green colors and the least to blue
— for physically accurate results use
weighted channels

49

Grayscale

* We use weighted channels for grayscaling:

void main()

{

vec3 col = texture(screenTexture, TexCoords).rgb;
float average = 0.2126 * col.r + 0.7152 * col.g + 0.0722 * col.b;
FragColor = vec4(average, average, average, 1.0);

FS5...

e ... difference is hard to notice, but
with more complicated scenes, a
weighted grayscaling effect tends to
be more realistic

51

Kernel Effects

* Another advantage is that we can sample color values from other
parts of the texture

* For example: take a small area around the current texture coordinate
and sample multiple texture values around the current texture value

* We can then create interesting effects by combining them in creative
ways

Kernel Effects

* A kernel (or convolution matrix) is a small matrix-like array of values
centered on the current pixel that multiplies surrounding pixel values
by its kernel values and adds them all together to form a single value

* Basically add a small offset to the texture coordinates in surrounding
directions of the current pixel and combine the results based on the
kernel

* Example of a kernel:

Kernel Effects

* This kernel takes 8 surrounding pixel values and multiplies them by 2
and the current pixel by -15

* Basically it multiplies the surrounding pixels by a weight determined
in the kernel and balances the result by multiplying the current pixel
by a large negative weight

Sum up to 17

Most kernels sum up to 1 if you add all the weights together.

If they don’t add up to 1 it means that the resulting texture color ends
brighter or darker than the original texture value.

55

Kernel Effects

» Kernels useful for post-processing
* We have to adapt the fragment shader to actually support kernels

* We make the assumption that each kernel is a 3x3 kernel (which most
kernels are)

Kernel Effects

const float offset = 1.0 / 300.0;

void main()

{

vec2 offsets[9] = vec2[](vec2(-offset, offset), // top-left
vec2(@0.0f,offset), // top-center
vec2(offset, offset), // top-right
vec2(-offset, 0.0f), // center-left
vec2(0.0f,0.0f), // center-center
vec2(offset, 0.0f), // center-right
vec2(-offset, -offset), // bottom-left
vec2(0.0f, -offset), // bottom-center
vec2(offset, -offset) // bottom-right

)s

float kernel[9] = float[](
-1, -1, -1,

-1) 9: -1)

-1, -1, -1

)5

57

Kernel Effects

vec3 sampleTex[9];
for(int i = 0; i < 9; i++)
sampleTex[i] = vec3(texture(screenTexture, TexCoords.st + offsets[i]));

vec3 col = vec3(0.0);
for(int i = 0; i < 9; i++)
col += sampleTex[i] * kernel[i];

FragColor = vec4(col, 1.0);
}

FS5...

ike this:

is sharpen kernel looks |

.. th

59

Blur

* A kernel that creates a blur effect is defined as follows

— N =
DO = DN
— N =

Blur

 All values add up to 16, so divide each value by 16 (otherwise result in
an extremely bright color)

* The resulting kernel array would then become:

float kernel[9] = float[](
1.0 / 16, 2@/16 1.0 / 16,
2.0 / 16, 4.0 / 16, 2.0 / 16,
1.0 / 16, 2.0 / 16, 1.0 / 16

)5

FS5...

e ... such a blur effect creates
interesting possibilities (drunk
effects, not wearing glasses, ...)

62

Edge Detection

* An edge-detection kernel that is similar to the sharpen kernel:

FS5...

e ... highlights all edges and darkens
the rest

e Used in tools like Photoshop
(graphic card’s ability to process
fragments in parallel, allows to
manipulate images on a per-pixel
basis in real-time with relative ease)

* Image-editing tools therefore tend
to use graphics cards more often for
Image-processing

Multiple Color-Attachments*

Multiple Color-Attachments

* Goal:
* Apply blur effect to objects
* Keep one box as the focus object

66

Multiple Color-Attachments

* First, we need to add another texture color buffer:

unsigned int framebuffer;

glGenFramebuffers(1l, &framebuffer);

glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);

unsigned int textureColorbuffer;

glGenTextures(1l, &textureColorbuffer);

glBindTexture(GL_TEXTURE_2D, textureColorbuffer);

glTexImage2D(GL_TEXTURE_2D, ©, GL_RGB, SCR_WIDTH, SCR_HEIGHT, ©, GL_RGB, GL_UNSIGNED BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D, textureColorbuffer, 0);
unsigned int textureColorbuffer2;

glGenTextures (1, &textureColorbuffer2);

glBindTexture(GL_TEXTURE_ 2D, textureColorbuffer2);
glTexImage2D(GL_TEXTURE 2D, @, GL_RGB, SCR_WIDTH, SCR_HEIGHT, @, GL_RGB,
GL_UNSIGNED_BYTE, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, |GL_COLOR_ATTACHMENT1|, GL_TEXTURE_2D,

textureColorbuffer2, 0);

Multiple Color-Attachments

* Define outputs into which the fragment shader will be written

GLenum color_attachments[] = { GL _COLOR_ATTACHMENTO, GL COLOR_ATTACHMENT1 };
glDrawBuffers(2, color_attachments);

Multiple Color-Attachments

* Define focus object with uniform int ,focus’

glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);

glEnable(GL_DEPTH_TEST);

glClearColor(1.f, 1.f, 1.f, 1.f);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

shader.use();

glm: :mat4 model = glm::mat4(1l.0f);

glm::mat4 view = camera.GetViewMatrix();

glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, ©.1f, 100.0f);
shader.setMat4("view", view);

shader.setMat4("projection”, projection);

shader.setInt("focus", 9);

// cubes

glBindVertexArray(cubeVAO) ;

glActiveTexture(GL_TEXTURE®);

glBindTexture(GL_TEXTURE_2D, cubeTexture);

model = glm::translate(model, glm::vec3(-1.0f, @.0f, -1.0f));
shader.setMat4("model", model);

glDrawArrays(GL_TRIANGLES, @, 36);

model = glm::mat4(1.0f);

model = glm::translate(model, glm::vec3(2.0f, 0.0f, 0.0f));
shader.setMat4("model", model);

glDrawArrays(GL_TRIANGLES, @, 36);

// floor

glBindVertexArray(planeVAO);

glBindTexture(GL_TEXTURE_2D, floorTexture);
shader.setMat4("model"”, glm::mat4(1.0f));
glDrawArrays(GL_TRIANGLES, ©, 6);

model = glm::mat4(1l.0f);

model = glm::translate(model, glm::vec3(0.5f, 0.0f, -0.5f));
shader.setMat4("model"”, model);

shader.setInt("focus", 1);

glDrawArrays(GL_TRIANGLES, O, 36);

glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Multiple Color-Attachments

* In the fragment shader output of two colors (two attachments)
#version 330 core

layout (location
layout (location

@) out vecd4 FragColor;
1) out vec4 FragColor2;

in vec2 TexCoords;
uniform int focus;
uniform sampler2D texturel;

void main()

{

FragColor = texture(texturel, TexCoords);
if(focus==1)
FragColor2 = texture(texturel, TexCoords);

Multiple Color-Attachments

* Left FragColor, Right FragColor2

* Black regions, because we still have the same depth test, it passes
and replace the color in FragColor2

71

Multiple Color-Attachments

* Now it is time to process both textures on the quad
* Add the second texture:

screenShader.use();
screenShader.setInt("screenTexture”, 0);
screenShader.setInt("screenTexture2", 1);

Multiple Color-Attachments

* In the render loop bind both textures:

screenShader.use();

glBindVertexArray(quadVAO);
glActiveTexture(GL_TEXTURE®);
glBindTexture(GL_TEXTURE_ 2D, textureColorbuffer);
glActiveTexture(GL_TEXTURELl);
glBindTexture(GL_TEXTURE_ 2D, textureColorbuffer2);
glDrawArrays(GL_TRIANGLES, 0, 6);

73

Multiple Color-Attachments

* Process them in the fragment shader

uniform sampler2D screenTexture;
uniform sampler2D screenTexture2;

;oid main(){

vec3 sampleTex[9];
for(int 1 = 0; 1 < 9; i++)

sampleTex[i] = vec3(texture(screenTexture, TexCoords.st + offsets[i]));
vec3 col = vec3(0.0);

for(int 1 = 0; i < 9; i++)
col += sampleTex[i] * kernel[i] [* ©.75}

vec3 col2 = vec3(texture(screenTexture2, TexCoords.st));
if(all(col2 == vec3(0)))
FragColor = vec4(col, 1.90);
else
FragColor = vec4(col2, 1.9);

FS5...

* ... nice

75

QO

Q
§
s
stion
g7
PP

