
Computer Graphics II
- Blending

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• Blending in OpenGL is also commonly known as the technique to
implement transparency within objects

• Transparency: objects not having a solid color, but a combination of
colors from the object itself and any other object behind it with
varying intensity

• A colored glass window is a transparent object; the glass has a color
of its own, but the resulting color contains the colors of all the objects
behind the glass as well

• Blending: blend several colors (of different objects) to a single color
(Transparency allows to see through objects)

2

Introduction

• Transparent objects can be completely
transparent (l.) or partially transparent (r.)

• Transparency of an object is defined by its color’s alpha value (4th
component of a color vector)

• Kept the 4th component at a value of 1.0 giving the object 0.0
transparency, while an alpha value of 0.0 would result in the object
having complete transparency

• An alpha value of 0.5 tells the object’s color consist of 50% of its own
color and 50% of the colors behind the object

3

Introduction

• The textures we have used so far all consisted
of 3 color components: red, green and blue

• Some textures also have an embedded alpha
channel

• This tells which parts of the texture have
transparency and by how much

• For example, the following window texture has an alpha value of 0.25
at its glass part (it would normally be completely red, but since it has
75% transparency it largely shows the star in an orange color) and an
alpha value of 0.0 at its corners

4

Discard (again)

5

Introduction

• Some images have full transparent parts, e.g., a grass texture

• Generally, paste a grass texture onto a 2D quad and place that quad
into the scene

• However, grass is not exactly shaped like a 2D square so you only
want to display some parts of the grass texture and ignore the others

6

Introduction

• Example: it is either is full opaque (alpha = 1.0) or it is fully
transparent (alpha = 0.0)

• You can see that wherever there is no grass

7

Introduction

• Adding grass to the scene, we want to see the grass only → discard
fragments showing the transparent parts of the texture

8

Load Texture

• stb_image automatically loads an image’s alpha channel if it’s
available

• Need to tell OpenGL that the texture uses an alpha channel:

9

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data);

Shader

• Also make sure that you retrieve all 4 color components of the texture
in the fragment shader, not just the RGB components:

10

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D texture1;

void main()
{

// FragColor = vec4(vec3(texture(texture1, TexCoords)), 1.0);
FragColor = texture(texture1, TexCoords);

}

Grass Leaves

• Add several of these leaves of grass throughout the basic scene
(depth testing lecture)

• Create a small vector and add several glm::vec3 variables to represent
the location of the grass leaves:

11

vector<glm::vec3> vegetation
{

glm::vec3(-1.5f, 0.0f, -0.48f),
glm::vec3(1.5f, 0.0f, 0.51f),
glm::vec3(0.0f, 0.0f, 0.7f),
glm::vec3(-0.3f, 0.0f, -2.3f),
glm::vec3 (0.5f, 0.0f, -0.6f)

};

Grass Leaves

• Each grass object is rendered as a single quad with the grass texture

• Not a perfect 3D representation of grass, but it’s efficient than
actually loading complex models

• Trick: add several more rotated grass quads to get a better result

• Create another VAO, fill the VBO and add the grass leaves:

12

glBindVertexArray(transparentVAO);
glBindTexture(GL_TEXTURE_2D, transparentTexture);
for (unsigned int i = 0; i < vegetation.size(); i++)
{

model = glm::mat4(1.0f);
model = glm::translate(model, vegetation[i]);
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 6);

}

F5…

• … we see the background

13

Grass Leaves

• OpenGL by default does not know what to do with alpha values

• Check in the fragment shader the alpha value, if it is below a certain
threshold, discard the fragment:

14

void main()
{

vec4 texColor = texture(texture1, TexCoords);
if(texColor.a < 0.1)

discard;
FragColor = texColor;

}

F5…

• … looks good

15

Texture

• OpenGL interpolates the border values of the texture with the next
repeated value of the texture (wrapping parameters: GL_REPEAT)

• With transparent values, the top of the texture image gets its
transparent value interpolated with the bottom border’s solid color

• Result is a slightly semi-transparent colored border around the
textured quad

• To prevent this, set the texture wrapping method to
GL_CLAMP_TO_EDGE whenever you use alpha textures

16

Rotation

• Change the coordinates of the quad:

17

float transparentVertices[] = {
-1.0f, 1.f, 0.0f, 0.0f, 0.0f,
-1.0f, -1.f, 0.0f, 0.0f, 1.0f,
1.0f, -1.f, 0.0f, 1.0f, 1.0f,

-1.0f, 1.f, 0.0f, 0.0f, 0.0f,
1.0f, -1.f, 0.0f, 1.0f, 1.0f,
1.0f, 1.f, 0.0f, 1.0f, 0.0f

};

Rotation

• Rotate the quad:

18

const int numQuads = 10;
const float pi_approx = 3.14159;
for (unsigned int i = 0; i < vegetation.size(); i++)
{

for (unsigned int j = 0; j < numQuads; j++)
{

model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0, 0.5, 0));
model = glm::translate(model, vegetation[i]);
model = glm::rotate(model, float(j) / numQuads * pi_approx,

glm::vec3(0, 1, 0));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 6);

}
}

F5…

• … and we get a better result

19

Blending

20

Introduction

• Discarding does not give us the possibility to render semi-transparent
images

• To render images with different levels of transparency we have to
enable blending:

21

glEnable(GL_BLEND);

Introduction

• Need to tell OpenGL how it should actually blend

• Blending in OpenGL is done with the following equation:

• ҧ𝐶𝑠𝑜𝑢𝑟𝑐𝑒: source color vector (originates from the texture)

• ҧ𝐶𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛: destination color vector (currently stored in the color buffer)

• ത𝐹𝑠𝑜𝑢𝑟𝑐𝑒: source factor value (impact of the alpha value on the source color)

• ത𝐹𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛: destination factor value (impact of the alpha value on the
destination color)

22

Introduction

• After the fragment shader (and all tests have passed), this blend
equation is applied on the fragment’s color output with the currently
stored color in the color buffer

• Source and destination colors will automatically be set by OpenGL,
but the source and destination factor can be set to a value of our
choosing

23

Example

24

(1,0,0,1) (0,0,1,0.6)

Example

• Want to draw the semi-transparent blue square
on top of the red square

• Red square = destination color (→ should be first in the color buffer)

• Now draw the blue square over the red square

25

(1,0,0,1) (0,0,1,0.6)

Example

• The question then arises: what do we set the
factor values to and what is the final color?

26

(1,0,0,1) (0,0,1,0.6)

?

Example

• Want to multiply the blue square with its alpha value:
ത𝐹𝑠𝑜𝑢𝑟𝑐𝑒 = 0.6

• Destination square have a contribution equal to the remainder of the
alpha value:

ത𝐹𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 1 − 0.6 = 0.4

• The equation thus becomes:

27

?

Example

• Final color:

28

glBlendFunc

• How do we tell OpenGL to use factors like these?

• There is a function for this called: glBlendFunc

• glBlendFunc(GLenum sfactor, GLenum dfactor):
• expects two parameters that set the option for the source and destination

factor

• OpenGL defined quite a few options

• It is also possible to set a constant color ҧ𝐶𝑐𝑜𝑛𝑠𝑡 with

29

glBlendColor(GLfloat red,GLfloat green,GLfloat blue,GLfloat alpha);

glBlendFunc
Option Value

GL_ZERO Factor is equal to 0.

GL_ONE Factor is equal to 1.

GL_SRC_COLOR Factor is equal to the source color vector ҧ𝐶𝑠𝑜𝑢𝑟𝑐𝑒.

GL_ONE_MINUS_SRC_COLOR Factor is equal to 1 minus the source color vector: 1 − ҧ𝐶𝑠𝑜𝑢𝑟𝑐𝑒.

GL_DST_COLOR Factor is equal to the destination color vector ҧ𝐶𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

GL_ONE_MINUS_DST_COLOR Factor is equal to 1 minus the destination color vector: 1 − ҧ𝐶𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

GL_SRC_ALPHA Factor is equal to the alpha component of the source color vector ҧ𝐶𝑠𝑜𝑢𝑟𝑐𝑒.

GL_ONE_MINUS_SRC_ALPHA Factor is equal to 1 − alpha of the source color vector ҧ𝐶𝑠𝑜𝑢𝑟𝑐𝑒.

GL_DST_ALPHA
Factor is equal to the alpha component of the destination

color vector ҧ𝐶𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

GL_ONE_MINUS_DST_ALPHA Factor is equal to 1 −alpha of the destination color vector ҧ𝐶𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

GL_CONSTANT_COLOR Factor is equal to the constant color vector ҧ𝐶𝑐𝑜𝑛𝑠𝑡.

GL_ONE_MINUS_CONSTANT_COLOR Factor is equal to 1 - the constant color vector ҧ𝐶𝑐𝑜𝑛𝑠𝑡.

GL_CONSTANT_ALPHA Factor is equal to the alpha component of the constant color vector ҧ𝐶𝑐𝑜𝑛𝑠𝑡.

GL_ONE_MINUS_CONSTANT_ALPHA Factor is equal to 1 −alpha of the constant color vector ҧ𝐶𝑐𝑜𝑛𝑠𝑡.

30

glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

Previous:

glBlendFuncSeparate
• It is also possible to set different options for the RGB and alpha channel

individually using glBlendFuncSeparate:

• srcRGB: Specifies how the red, green, and blue blending factors are computed
(initially GL_ONE)

• dstRGB: Specifies how the red, green, and blue destination blending factors are
computed (initially GL_ZERO)

• srcAlpha: Specified how the alpha source blending factor is computed (initially
GL_ONE)

• dstAlpha: Specified how the alpha destination blending factor is computed
(initially GL_ZERO)

31

glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha);

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBlendFuncSeparate.xhtml

glBlendFuncSeparate

• The calculations are:

32

glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha);

glBlendFuncSeparate

33
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBlendFuncSeparate.xhtml

glBlendFuncSeparate

• Example: this sets the RGB components as previously, but only lets
the resulting alpha component be influenced by the source’s alpha
value

34

glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ZERO);

glBlendEquation
• More flexibility by changing the operator between the source and

destination part of the equation

• Right now, the source and destination components are added: more
options

• GL_FUNC_ADD: the default: ҧ𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑆𝑟𝑐 + 𝐷𝑠𝑡

• GL_FUNC_SUBTRACT: ҧ𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑆𝑟𝑐 − 𝐷𝑠𝑡

• GL_FUNC_REVERSE_SUBTRACT: ҧ𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐷𝑠𝑡 − 𝑆𝑟𝑐

• GL_MIN: component-wise: ҧ𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = min(𝑆𝑟𝑐, 𝐷𝑠𝑡)

• GL_MAX: ҧ𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = max(𝑆𝑟𝑐, 𝐷𝑠𝑡)

35

glBlendEquation(GLenum mode);

Semi-Transparent Textures

36

Introduction

• Now that we know how OpenGL works, we are adding several semi-
transparent windows

• Now, we are rendering the transparent window texture

37

Introduction

• First, during initialization we enable blending and set the appropriate
blending function:

38

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Introduction

• Since we enabled blending there is no need to discard fragments so
keep the original version:

39

#version 330 core
out vec4 FragColor;

in vec2 TexCoords;

uniform sampler2D texture1;

void main()
{

FragColor = texture(texture1, TexCoords);
}

F5…

• … the glass part of the
window texture is semi-
transparent we should be able
to see the rest of the scene by
looking through this window

40

F5…

• … transparent parts of the
front window are occluding
the windows in the
background

41

Why?

• Depth testing tricky combined with blending

• When writing to the depth buffer, the depth test is independent of
transparency

• Entire quad of the window is checked for depth testing regardless of
transparency

• Even though the transparent part should show the windows behind it,
the depth test discards them

42

glDisable(GL_DEPTH_TEST)?

• This is also not a good idea…

43

Why?

• Cannot render the windows however we want and expect the depth
buffer to solve all our issues for us

• To make sure the windows show the windows behind them, we have
to draw the windows in the background first

• This means we have to manually sort the windows from furthest to
nearest and draw them accordingly ourselves

44

Correct Order

• Have to draw the farthest object first and the closest object as last

• Non-blended objects can still be drawn as normal using the depth
buffer (no need to sort), but need to be drawn first

• When drawing a scene with non-transparent and transparent objects
the general outline is usually as follows:

1. Draw all opaque objects first.

2. Sort all the transparent objects.

3. Draw all the transparent objects in sorted order.

45

Sort

• Sorting: get distance of an object from the viewer’s perspective
(distance between the camera’s position and the object’s position)

• Store the distance with the position vector in a map data structure
(STL library)

• A map automatically sorts its values based on its keys

46

std::map<float, glm::vec3> sorted;
for (unsigned int i = 0; i < windows.size(); i++)
{

float distance = glm::length(camera.Position - windows[i]);
sorted[distance] = windows[i];

}

Sort

• It results in a map that sorts each of the window positions based on
their distance key value from lowest to highest distance

• For rendering, take the map’s values in reverse order (from farthest to
nearest) and draw the corresponding windows in correct order:

47

for (std::map<float, glm::vec3>::reverse_iterator it = sorted.rbegin(); it !=
sorted.rend(); ++it)
{

model = glm::mat4(1.0f);
model = glm::translate(model, it->second);
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 6);

}

F5…

• … the glass part of the
window texture is semi-
transparent and correct now

48

Remarks

• This approach works well for this specific scenario, it doesn’t take
rotations, scaling or any other transformation into account and
weirdly shaped objects need a different metric than simply a position
vector

• Sorting objects in your scene is a difficult task

• More advanced techniques, e.g., order independent transparency

• For now it is ok, if we know the limitations, we can still get fairly
decent blending implementations

49

Face Culling

50

Introduction

• If you look at this box and count the maximum
number of faces you ended up with a maximum
number of 3

• So why would we waste the effort of actually
drawing those other 3 faces

• If we could discard those in some way we would
save 50% of fragment shader runs

51

Introduction

• Great idea, but how do we know if a face of an object is not visible
from the viewer’s point of view?

• If we imagine any closed convex shape, each of its faces has two sides

• Each side would either face the camera or show its back

• What if we could only render the faces that are facing the viewer?

53

Introduction

• This is exactly what face culling does

• OpenGL checks all the faces that are front facing towards the viewer
and renders those while discarding all the faces that are back facing
→ saving us a lot of fragment shader calls (expensive!)

• We do need to tell OpenGL which of the faces we use are actually the
front faces and which faces are the back faces

• OpenGL uses a clever trick for this by analyzing the winding order of
the vertex data

54

Winding Order

• When we define a set of triangle vertices we’re defining them in a
certain winding order that is either clockwise or counter-clockwise

• Each triangle consists of 3 vertices and we specify those 3 vertices in a
winding order as seen from the center of the triangle

• Clockwise (left), counter-clockwise (right)

55

1,2,3 1,3,2

Winding Order

• In the code:

• glDrawArrays:

• glDrawElements:

56

unsigned int indices[] = { // note that we start from 0!
0, 1, 2, // clockwise (cw): 1,2,3
0, 2, 1 // counter-clockwise (ccw): 1,3,2

};

float vertices[] = {
V1, V2, V3, // clockwise (cw): 1,2,3
V1, V3, V2 // counter-clockwise (ccw): 1,3,2

};

1,2,3 1,3,2

Winding Order

• Each set of 3 vertices forming a triangle primitive contains a winding order

• OpenGL uses this information to determine if a triangle is a front-facing or
a back-facing triangle

• By default, triangles with counter-clockwise vertices are front-facing

• When defining the vertex order visualize the corresponding triangle as if it
was facing you → each triangle should be counter-clockwise as if you’re
directly facing that triangle

• The actual winding order is calculated at the rasterization stage (after
vertex shader) → vertices are then seen as from the viewer’s point of view

57

Winding Order

• All the triangle vertices that the viewer
is then facing are in the correct winding
order (as we specified)

• Vertices of the triangles at the other
side are now rendered in such a way
that their winding order becomes
reversed

• The result: facing triangles are seen as
front-facing triangles and the triangles
at the back are seen as back-facing
triangles

58

Winding Order

• In the vertex data we defined both triangles in
ccw order (the front and back triangle as 1, 2, 3)

• From the viewer’s direction the back triangle is rendered cw (1,2,3)

• Even if we specified the back triangle in ccw order, it is now rendered
in a clockwise order

• This is exactly what we want to cull (discard) non-visible faces

59

Face Culling

• Now that we know how to set the winding
order of the vertices, we can start using
OpenGL’s face culling option (disabled by
default)

• The cube vertex data was not defined with
the ccw winding order (update→)

60

float cubeVertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, // bottom-left
0.5f, 0.5f, -0.5f, 1.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, -0.5f, 1.0f, 1.0f, // top-right
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, // bottom-left
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, // top-left
// front face
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, // bottom-left
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, 0.5f, 1.0f, 1.0f, // top-right
0.5f, 0.5f, 0.5f, 1.0f, 1.0f, // top-right
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, // top-left
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, // bottom-left
// left face
-0.5f, 0.5f, 0.5f, 1.0f, 0.0f, // top-right
-0.5f, 0.5f, -0.5f, 1.0f, 1.0f, // top-left
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f, // bottom-left
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f, // bottom-left
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, // bottom-right
-0.5f, 0.5f, 0.5f, 1.0f, 0.0f, // top-right
// right face
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, // top-left
0.5f, -0.5f, -0.5f, 0.0f, 1.0f, // bottom-right
0.5f, 0.5f, -0.5f, 1.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 0.0f, 1.0f, // bottom-right
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, // top-left
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, // bottom-left
// bottom face
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, // top-left
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, // bottom-left
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, // bottom-left
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, // bottom-right
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f, // top-right
// top face
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, // top-left
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, -0.5f, 1.0f, 1.0f, // top-right
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, // bottom-right
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, // top-left
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f // bottom-left

};

Face Culling

• To enable face culling we only have to enable OpenGL’s
GL_CULL_FACE option:

• Now, all faces that are not front-faces are discarded → save 50% of
performance on rendering fragments

• Only works with closed shapes like a cube, have to disable face culling
again when we draw the grass leaves (front and back face)

61

glEnable(GL_CULL_FACE);

...
glDisable(GL_CULL_FACE);
// render floor & windows

Fly through the Box

62

Face Culling

• Can change the type of face we want to cull:

• The glCullFace function has three possible options:
• GL_BACK: Culls only the back faces

• GL_FRONT: Culls only the front faces

• GL_FRONT_AND_BACK: Culls both the front and back faces

63

glCullFace(GL_FRONT);

Face Culling

• The initial value of glCullFace is GL_BACK

• We can also tell OpenGL to rather prefer clockwise faces as the front-
faces instead of counter-clockwise faces via glFrontFace:

• Default value is GL_CCW (counter-clockwise ordering)

• Other option: GL_CW (clockwise ordering)

64

glFrontFace(GL_CCW);

Face Culling

• Simple test: reverse the winding order by telling OpenGL that the
front-faces are now determined by a clockwise ordering instead of a
counter-clockwise ordering:

65

glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);

Face Culling

• Note that you can create the same effect by culling front faces with
the default counter-clockwise winding order:

66

glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);

Conclusion

• Face culling is a great for increasing performance minimal effort

• You do have to keep track of which objects will actually benefit from
face culling and which objects shouldn’t be culled

67

Example*

68

Introduction

• Let us watch inside the box

• We will draw the back faces first

• Then, the front faces with transparency
at certain regions

69

Back Faces

• First, we draw the back faces

70

glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
glBindVertexArray(cubeVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-3.0f, 0.0001f, -1.0f));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);

Front Faces

• Afterwards, we draw the front faces

71

glCullFace(GL_BACK);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-3.0f, 0.0001f, -1.0f));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
glDisable(GL_CULL_FACE);

Fragment Shader

• Fragment Shader → distinguish between front and back faces
(gl_FrontFacing):

72

#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D texture1;
void main()
{

FragColor = texture(texture1, TexCoords);
if(gl_FrontFacing && length(FragColor.rgb)>0.95)

FragColor=vec4(1,1,1,0.5);
}

F5…

• … some parts are
transparent

73

Questions???

74

