
Computer Graphics II
- Depth & Stencil Testing

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• In the lecture about coordinate systems, we rendered a 3D box using
the depth buffer to prevent faces rendering to the front while they’re
behind other faces

• Now focusing more on these depth values and the corresponding
depth buffer (or z-buffer) and how it actually determines if a fragment
is indeed behind other fragments

2

Introduction

• Depth-buffer is a buffer like the color buffer, instead of storing the
fragment colors it stores the depth

• Depth per fragment with (usually) the same width and height as the
color buffer

• It is automatically created by the windowing system and stores its
depth values as 16, 24 or 32 bit floats (mostly a precision of 24 bits)

• When depth testing is enabled: OpenGL tests depth value of a
fragment against the content of the depth buffer (depth test)

• If it passes → depth buffer is updated with new depth value,
otherwise discard fragment

3

Introduction

• Depth testing is done in screen space after the fragment shader (and
after the stencil test → later)

• The screen space coordinates relate directly to the viewport defined
by OpenGL’s glViewport function → accessed with GLSL’s
gl_FragCoord variable in the fragment shader

• gl_FragCoord.xy represent the fragment’s screen-space coordinates
(with (0,0) being the bottom-left corner)

• gl_FragCoord.z contains the actual depth value of the fragment →
this value is compared to the depth buffer’s content

4

Most GPUs support a hardware feature called early depth testing
(OpenGL 4.2)

It allows the depth test to run before the fragment shader runs

If it is clear that a fragment is not visible (e.g., behind other objects)
→ prematurely discard

Fragment shaders usually expensive so avoid it running wherever we
can

Restriction on the fragment shader for early depth testing: do not
change the fragment’s depth value (OpenGL won’t be able to figure

out the depth value before the fragment shader)

5

Depth Test

• Depth testing is disabled by default so to enable depth testing we
need to enable it with the GL_DEPTH_TEST option:

• If it is enabled OpenGL automatically stores fragments’ z-values in the
depth buffer if they passed the depth test and discards fragments if
they failed the depth test accordingly

6

glEnable(GL_DEPTH_TEST);

Depth Test

• If depth testing is enabled, the depth buffer should be cleared before
each render iteration using the GL_DEPTH_BUFFER_BIT, otherwise we
are stuck with the written depth values from last render iteration:

7

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Depth Test

• If you want to perform the depth test on all fragments and discard
them accordingly, but not update the depth buffer (read-only depth
buffer), OpenGL allows disabling writing to the depth buffer by setting
its depth mask to GL_FALSE

• Note that this only has effect if depth testing is enabled

8

glDepthMask(GL_FALSE);

Depth Test Function

• OpenGL allows modifying the comparison operators for the depth
test → control when OpenGL should pass or discard fragments and
when to update the depth buffer

• We can set the comparison operator (or depth function) by calling
glDepthFunc:

9

glDepthFunc(GL_ALWAYS);

Depth Test Function
• The function accepts several comparison operators:

Function Description

• GL_ALWAYS The depth test always passes.

• GL_NEVER The depth test never passes.

• GL_LESS Passes if the fragment’s depth value is less than the stored depth value.

• GL_EQUAL Passes if the fragment’s depth value is equal to the stored depth value.

• GL_LEQUAL Passes if the fragment’s depth value is less than or equal to the stored depth
value.

• GL_GREATER Passes if the fragment’s depth value is greater than the stored depth value.

• GL_NOTEQUAL Passes if the fragment’s depth value is not equal to the stored depth value.

• GL_GEQUAL Passes if the fragment’s depth value is greater than or equal to the stored depth
value.

10

Depth Test Function
• By default the depth function GL_LESS is used

Function Description

• GL_ALWAYS The depth test always passes.

• GL_NEVER The depth test never passes.

• GL_LESS Passes if the fragment’s depth value is less than the stored depth value.

• GL_EQUAL Passes if the fragment’s depth value is equal to the stored depth value.

• GL_LEQUAL Passes if the fragment’s depth value is less than or equal to the stored depth
value.

• GL_GREATER Passes if the fragment’s depth value is greater than the stored depth value.

• GL_NOTEQUAL Passes if the fragment’s depth value is not equal to the stored depth value.

• GL_GEQUAL Passes if the fragment’s depth value is greater than or equal to the stored depth
value.

11

Depth Test Function

• Let’s experiment with changing the depth function

• Use a setup with two textured cubes sitting on a textured floor (no
lighting) → 4.advanced_opengl__1.1.depth_testing

• Change the depth function to GL_ALWAYS:

12

glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS); // always pass the depth test

// (same effect as glDisable(GL_DEPTH_TEST))

Depth Test Function

• Same behavior as didn’t enable depth
testing

• Depth test always passes → fragments
drawn last are rendered in front of the
fragments that were drawn before

• Drawn the floor plane as last the plane’s
fragments overwrite each of the
container’s fragments

13

Depth Test Function

14

Always Never Less

Greater
(glClearDepth(0.0))

Notequal

Depth Value Precision

• The depth buffer contains depth values in [0,1] and compares it with
z-value of all the objects in the scene as seen from the viewer

• Z-values in view space is any value between the projection frustum’s
near and far value

• Need to transform these view-space z-values to the range of [0,1] and
one way is to linearly transform them:

15

Depth Value Precision

• Here near and far are the values used in the projection matrix to set
the visible frustum (Lecture Coordinate Systems)

• Equation transforms a z value within the frustum to [0,1]

• The relation between the z-value and its corresponding depth value is
presented in the following graph:

16

𝑛𝑒𝑎𝑟 = 1, 𝑓𝑎𝑟 = 50

Depth Value Precision

• Linear depth buffer like this is almost never used

• For correct projection properties a non-linear depth equation
proportional to 1/z is used

• Enormous precision when z is small and much less precision when z is
far away

• The linear equation doesn’t take this into account

17

Depth Value Precision

• Non-linear function is proportional to 1/𝑧, 𝑧 in 1,2 → between 1
and 0.5 (half of the precision a float provides us → enormous
precision at small z-values)

• Z-values between 50.0 and 100.0 account for only 2% of the float’s
precision (what we want)

• Equation, that also takes near and far distances into account:

18

Depth Value Precision

• Note: The values in the depth buffer are not linear in screen-space
(they are linear in view-space before the projection matrix is applied)

• A value of 0.5 in the depth buffer does not mean the object’s z-values
are halfway in the frustum (it is actually quite close to the near plane)

• Non-linear relation between the z-value and the resulting depth:

19

𝑛𝑒𝑎𝑟 = 1, 𝑓𝑎𝑟 = 10

Depth Value Precision

• Depth values are greatly determined by the small z-values →
enormous depth precision to the objects close by

• The equation to transform z-values (from the viewer’s perspective) is
embedded within the projection matrix

• The effect of this non-linear equation quickly becomes apparent
when we try to visualize the
depth buffer

20

Note that all equations give a depth value close to 0.0 when the
object is close by and a depth value close to 1.0 when the object is

close to the far plane.

21

Visualizing the Depth Buffer

22

Visualizing the Depth Buffer

• Built-in gl_FragCoord.z contains the depth value of that particular
fragment

• To output this value as a color → return a fragment’s depth-based
color

23

void main()
{

FragColor = vec4(vec3(gl_FragCoord.z), 1.0);
}

Visualizing the Depth Buffer

• Run the program and you notice that
everything seems white

• So why aren’t any of the depth values
closer to 0.0 and thus darker?

24

Visualizing the Depth Buffer

• Depth values in screen space are non-
linear (high precision for small z; low
precision for large z)

• Depth increases rapidly over distance
→ almost all vertices are close to 1.0

• Close to objects → colors getting
darker (z-values becoming smaller)

25

Linearize the Depth Buffer

• Objects close by have a much larger effect on the depth value than
objects far away

• We can transform the non-linear depth values to a linear one → have
to reverse the process of projection:

1. Re-transform depth values from [0,1] to NDCs in [−1,1] (clip space)

2. Reverse the non-linear equation

3. Apply this inversed equation to the resulting depth value →result is then a
linear depth value

26

Linearize the Depth Buffer

1. Re-transform depth values from [0,1] to NDCs in [−1,1] (clip space)

27

float z = depth * 2.0 - 1.0; // back to NDC

Linearize the Depth Buffer

2. Reverse the non-linear equation

28

Linearize the Depth Buffer

2. Reverse the non-linear equation

29

Linearize the Depth Buffer

2. Reverse the non-linear equation

30

(gl_FragCoord.z=)

Linearize the Depth Buffer

2. Reverse the non-linear equation

31

Linearize the Depth Buffer

2. Reverse the non-linear equation

32

Linearize the Depth Buffer

2. Reverse the non-linear equation

33

𝑁𝐷𝐶𝑍 −𝑛

𝑛
= −1

𝑁𝐷𝐶𝑍 −𝑓

𝑓
= 1

Linearize the Depth Buffer

2. Reverse the non-linear equation

34

𝑁𝐷𝐶𝑍 −𝑛

𝑛
= −1

𝑁𝐷𝐶𝑍 −𝑓

𝑓
= 1

Linearize the Depth Buffer

2. Reverse the non-linear equation

35

float z = (2.0 * far * near) / (far + near - z * (far - near));

Linearize the Depth Buffer

2. Reverse the non-linear equation

36

#version 330 core
out vec4 FragColor;

float near = 0.1;
float far = 100.0;
float LinearizeDepth(float depth)
{

float z = depth * 2.0 - 1.0; // back to NDC
return (2.0 * far * near) / (far + near - z * (far - near));

}

void main()
{

float depth = LinearizeDepth(gl_FragCoord.z) / far; // /far -> [0.001,1]
FragColor = vec4(vec3(depth), 1.0);

}

F5…

• … colors are mostly black, linear
depth from near plane (0.1) to far
plane (100) → far away

37

Z-Fighting

• Visual artifact occur when two planes/triangles are closely aligned →
depth buffer not enough precision to figure out which in front

• Causes glitchy patterns: z-fighting

38

Z-Fighting

• Box placed at the exact height of the floor
(bottom plane of the box is coplanar with
the floor plane)

• Depth values of both planes are same
→ resulting depth test has no way of
figuring out which is the right one

• Moving the camera inside one of the boxes
yield the glitchy effect:

39

Z-Fighting

• Z-fighting is a common problem

• Generally stronger when objects are at a
further distance (depth buffer has less
precision at larger z-values)

• Z-fighting cannot be completely prevented

• A few tricks that will help to mitigate or
completely prevent z-fighting

40

Prevent Z-Fighting

• Most important trick: never place objects too close
to each other (triangles closely overlap)

• Small offset is hardly noticeable by a user →
completely remove z-fighting

• In our case: move the boxes slightly in the positive
y-direction (not be noticeable and completely
reduce the z-fighting)

• Requires manual intervention of each of the objects
and thorough testing

41

Prevent Z-Fighting

• Second trick: set the near plane as far as possible

• Precision is extremely large close to the near plane (moving near
plane farther improves the precision over the frustum range)

• Setting the near plane too far causes clipping of near objects (matter
of tweaking and experimentation)

42

Prevent Z-Fighting

• Another trick at the cost of some performance: use a higher precision
depth buffer

• Most depth buffers have a precision of 24 bits, but most cards
nowadays support 32 bits → increases the precision significantly

• At the cost of some performance we get much more depth precision,
reducing z-fighting

43

Prevent Z-Fighting

• These techniques are the most common and easy-to-implement anti
z-fighting techniques

• Other techniques require a lot more work and still will not completely
disable z-fighting

• If you use the proper combination of these tricks you probably will
not need to deal with z-fighting

44

Stencil Testing

45

Stencil Testing

• After the fragment shader processed the fragment, a stencil test is
executed that has the possibility of discarding fragments

• Then the remaining fragments get passed to the depth test (possibly
discard even more fragments)

• Stencil test is based on another buffer → stencil buffer

• It (usually) contains 8 bits per stencil value that (= 256 different stencil
values per pixel/fragment)

• Can set these stencil values to preferable values to discard or keep
fragments whenever a particular fragment has a certain stencil value

46

Each windowing library needs to set up a stencil buffer

GLFW does this automatically

Other windowing libraries might not create a stencil library by default

47

Stencil Testing

• A simple example of a stencil buffer (pixels not-to-scale):

48

0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000001111110000000
0000000000000000001111110000000
0000000000000000001111110000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000

Color buffer Stencil buffer After stencil test

Stencil Testing

• Stencil buffer cleared with 0s, then rectangle of 1s is set

• The fragments of the scene are then only rendered (the others are
discarded) wherever the stencil value of that fragment contains a 1

49

0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000001111110000000
0000000000000000001111110000000
0000000000000000001111110000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000

Color buffer Stencil buffer After stencil test

Stencil Testing

• Stencil buffer operations allow setting stencil buffer at specific values
(wherever we are rendering fragments)

• Changing the content of the stencil buffer while rendering: we are
writing to the stencil buffer

• Can read these values to discard or pass certain fragments, general
outline is usually as follows:

• Enable writing to the stencil buffer
• Render objects, updating the content of the stencil buffer
• Disable writing to the stencil buffer
• Render (other) objects, this time discarding certain fragments based on the

content of the stencil buffer

50

Stencil Testing

• By using the stencil buffer we can thus discard certain fragments
based on the fragments of other drawn objects in the scene

• Enable stencil testing by enabling GL_STENCIL_TEST

• From that point on, all rendering calls will influence the stencil buffer:

51

glEnable(GL_STENCIL_TEST);

Stencil Testing

• Note to clear the stencil buffer each iteration (like color and depth):

52

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

Stencil Testing

• Like depth testing’s glDepthMask function, there is an equivalent for
the stencil buffer

• glStencilMask allows setting a bitmask that is ANDed with the stencil
value

• By default, it is set to a bitmask of all 1s (unaffecting the output), but
setting to 0x00 all the stencil values written to the buffer end up as 0s
(equivalent to depth testing’s glDepthMask(GL_FALSE)):

53

glStencilMask(0xFF);
glStencilMask(0x00);

Stencil Testing

• Mostly we will just writing 0x00 or 0xFF as the stencil mask, but it’s
good to know there are options to set custom bit-masks

54

Stencil Testing

• Like depth testing, we can set when a stencil test should pass or fail
and how it should affect the stencil buffer

• There are two functions we can use to configure stencil testing:
glStencilFunc and glStencilOp

55

Stencil Testing

• glStencilFunc(GLenum func, GLint ref, GLuint mask) has three
parameters:

• func: sets the stencil test function; applied to the stored stencil value and
the glStencilFunc’s ref value: GL_NEVER, GL_LESS, GL_LEQUAL, GL_GREATER,
GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL and GL_ALWAYS

• ref: specifies reference value for the stencil test; stencil buffer’s content is
compared to this value

• mask: specifies a mask that is ANDed with reference value and stored stencil
value before the test compares them (Initially set to all 1s)

56

Stencil Testing

• In the case of the simple stencil example from the beginning, the
function would be set to:

• Tells OpenGL whenever the stencil value of a fragment is equal
(GL_EQUAL) to the reference value 1 the fragment passes the test and
is drawn, otherwise discarded

• glStencilFunc only describes what OpenGL should do with the content
of the stencil buffer, not how we can actually update the buffer

• That is where glStencilOp comes in

57

glStencilFunc(GL_LEQUAL, 1, 0xFF);

Stencil Testing

• glStencilOp(GLenum sfail, GLenum dpfail, GLenum dppass) contains
three options:

• sfail: action to take if the stencil test fails

• dpfail: action to take if the stencil test passes, but the depth test fails

• dppass: action to take if both the stencil and the depth test pass

58

Stencil Testing
• Then for each of the options you can take any of the following actions:

Action Description

GL_KEEP Currently stored stencil value is kept

GL_ZERO Stencil value is set to 0

GL_REPLACE Stencil value is replaced with reference value set with glStencilFunc

GL_INCR Stencil value is increased by 1 if it is lower than the maximum value

GL_INCR_WRAP Same as GL_INCR, but wraps it back to 0 if maximum value is exceeded

GL_DECR Stencil value is decreased by 1 if it is higher than the minimum value

GL_DECR_WRAP Same as GL_DECR, but wraps it to the maximum value if lower than 0

GL_INVERT Bitwise inverts the current stencil buffer value

59

Stencil Testing

• By default glStencilOp is set to (GL_KEEP, GL_KEEP, GL_KEEP) so
independent of any test, the stencil buffer keeps its values → does
not update the stencil buffer

• Want to write to the stencil buffer you need to specify at least one
different action for any of the options

• glStencilFunc and glStencilOp allows to precisely specify when and
how to update the stencil buffer (can also specify when the stencil
test should pass or not e.g. when fragments should be discarded)

60

Object Outlining

• As an example, to demonstrate the stencil
test, we implement a particular useful
feature: the object outlining

61

Object Outlining
• Useful effect for selecting objects

• The routine for outlining your objects is as follows:

1. Set the stencil func to GL_ALWAYS before drawing the (to be outlined) objects,
updating the stencil buffer with 1s wherever the objects’ fragments are
rendered

2. Render the objects

3. Disable stencil writing and depth testing

4. Scale each of the objects by a small amount

5. Use a different fragment shader that outputs a single (border) color

6. Draw the objects again, but only if their fragments’ stencil values are not equal
to 1

7. Enable stencil writing and depth testing again

62

Object Outlining

• This sets the content of the stencil buffer to 1s for each of the object’s
fragments

• The borders, are basically scaled-up versions of the objects

• Wherever the stencil test passes, the scaled-up version is drawn
which is around the borders of the object

• Discarding all the fragments of the scaled-up versions that are part of
the original objects’ fragments using the stencil buffer

63

Object Outlining

• First, create a very basic fragment shader that outputs a border color

• Simply set a color value and call the shader shaderSingleColor:

64

#version 330 core
out vec4 FragColor;

void main()
{

FragColor = vec4(0.04, 0.28, 0.26, 1.0);
}

Object Outlining

• Add object outlining to the two boxes only (leave the floor out)

• Draw the floor first, then the two boxes (while writing to the stencil
buffer), then draw the scaled-up boxes(while discarding the
fragments that write over the previously drawn container fragments)

65

Object Outlining

• First, want to enable stencil testing and set the actions to take
whenever any of the tests succeed or fail:

• If any of the tests fail do nothing, we simply keep the currently stored
value that is in the stencil buffer

• If both the stencil test and the depth test succeed however, we want
to replace the stored stencil value with the reference value set via
glStencilFunc which we later set to 1

66

glEnable(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);

Object Outlining

• Clear the stencil buffer to 0s and for the boxes update the stencil
buffer to 1 for each fragment drawn:

• With GL_ALWAYS, we make sure that each of the boxes’ fragments
update the stencil buffer with a stencil value of 1

• Because the fragments always pass the stencil test, the stencil buffer
is updated with the reference value wherever we’ve drawn them

67

glStencilFunc(GL_ALWAYS, 1, 0xFF);
glStencilMask(0xFF);
shader.use();
DrawBoxes();

Object Outlining
• Stencil buffer is updated with 1s where the boxes were drawn

• Now draw the upscaled boxes, but disabling writing to the stencil buffer:

• Set GL_NOTEQUAL to ensure that only drawing parts of the boxes not
equal 1 are drawn (parts outside the previously drawn boxes)

• Disable depth testing → scaled up containers e.g. the borders do not get
overwritten by the floor (enable afterwards)

68

glStencilFunc(GL_NOTEQUAL, 1, 0xFF);
glStencilMask(0x00);
glDisable(GL_DEPTH_TEST);
shaderSingleColor.use();
DrawScaledBoxes();

Object Outlining

• Object outlining routine:

69

float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;

processInput(window);

glClearColor(1.f, 1.f, 1.f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

glm::mat4 model = glm::mat4(1.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH /
(float)SCR_HEIGHT, 0.1f, 100.0f);

Object Outlining

• Object outlining routine:

70

// draw floor as normal, but don't write the floor to the stencil buffer
glStencilMask(0x00);
shader.use();
shader.setMat4("view", view);
shader.setMat4("projection", projection);
shader.setMat4("model", glm::mat4(1.0f));
glBindVertexArray(planeVAO);
glBindTexture(GL_TEXTURE_2D, floorTexture);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);

Object Outlining

• Object outlining routine:

71

// 1st. render pass, draw objects as normal, writing to the stencil buffer
glStencilFunc(GL_ALWAYS, 1, 0xFF);
glStencilMask(0xFF);
// cubes
glBindVertexArray(cubeVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, -1.0f));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 0.0f));
shader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);

Object Outlining

• Object outlining routine:

72

// 2nd.: draw scaled versions of the boxes, disabling stencil writing.
glStencilFunc(GL_NOTEQUAL, 1, 0xFF);
glStencilMask(0x00);
glDisable(GL_DEPTH_TEST);
shaderSingleColor.use();
shaderSingleColor.setMat4("view", view);
shaderSingleColor.setMat4("projection", projection);
glBindVertexArray(cubeVAO);

Object Outlining

• Object outlining routine:

73

glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, -1.0f));
model = glm::scale(model, glm::vec3(1.1, 1.1, 1.1));
shaderSingleColor.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 0.0f));
model = glm::scale(model, glm::vec3(1.1, 1.1, 1.1));
shaderSingleColor.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
glStencilMask(0xFF);
glStencilFunc(GL_ALWAYS, 0, 0xFF);
glEnable(GL_DEPTH_TEST);

F5…

… nice outlines!

74

Borders overlap between both containers which is usually the desired
effect that we want

If you want a complete border per object you’d have to clear the
stencil buffer per object and get a little creative with the depth buffer

75

Reflection*

76

Reflection

• Now, we want to experiment with stencil
buffers and create a very simple
reflection:

77

Reflection

• First, we create two cubes:

78

glEnable(GL_DEPTH_TEST);
glm::mat4 model, view, projection = ...
shader.use();
glBindVertexArray(cubeVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = …;
shader.setMat4(…);
glDrawArrays(GL_TRIANGLES, 0, 36);
model = …;
shader.setMat4(…);
glDrawArrays(GL_TRIANGLES, 0, 36);

Reflection

• Then, create the floor:

79

shader.use();
model = …;
shader.setMat4(…);

glBindVertexArray(planeVAO);
glBindTexture(GL_TEXTURE_2D, floorTexture);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);

Reflection

• Then, create translated boxes:

80

shader.use();
glBindVertexArray(cubeVAO);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = …;
shader.setMat4(…);
glDrawArrays(GL_TRIANGLES, 0, 36);
model = …;
shader.setMat4(…);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);

Reflection

• What is wrong?

• Missing reflection

• Visible box

→ Container that is underneath the
floor should only be visible where there is
also a floor

81

Reflection

• Missing reflection is easy:

82

// Draw floor
glDepthMask(GL_FALSE);
shader.use();
…
glDrawArrays(GL_TRIANGLES, 0, 6);
glDepthMask(GL_TRUE);

Reflection

• Deactivating the depth test gives us
unwanted results → stick with
glDepthMask(GL_FALSE);

83

Procedure

• Floor:
• Activate stencil test

• Write 1s to all stencils of the floor

• Draw floor

• Reflected boxes:
• Stencil should only pass of the stencil values are 1 (then the floor was drawn)

• Draw the reflected boxes only at the abovementioned fragments

84

Reflection

• For the floor:

85

// Draw floor
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 1, 0xFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilMask(0xFF);
shader.use();
…
glDrawArrays(GL_TRIANGLES, 0, 6);

Reflection

• Reflected boxes:

86

glStencilFunc(GL_EQUAL, 1, 0xFF);
glDepthMask(GL_TRUE);

shader.use();
glBindVertexArray(cubeVAO);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = …;
shader.setMat4(…);
glDrawArrays(GL_TRIANGLES, 0, 36);
model = …;
shader.setMat4(…);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);

Reflection

• Add attenuation

87

…
shader.setFloat("attenuation", 1.);
…
shader.setFloat("attenuation", .5);
…
__
…
uniform float attenuation;

void main()
{

FragColor = texture(texture1,TexCoords);
FragColor.rgb*=attenuation;

}

Cut Out*

88

Cut Out

• Now, we want to cut out a piece of the
box to reveal the inside

89

Cut Out

• First, we create a box:

90

glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
glm::mat4 model, view, projection = ... shader.use();
glBindVertexArray(cubeVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
model = …;
shader.setMat4(…);
shader.setFloat("attenuation", 1.0);

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE,
GL_FALSE);
glDrawArrays(GL_TRIANGLES, 0, 36);

Cut Out

• Then, create the cut-out box:

91

// generate second smaller cut-out box
glStencilFunc(GL_ALWAYS, 1, 0xFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilMask(0xFF);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE,
GL_FALSE);
glDepthMask(GL_FALSE);
model = glm::mat4(1.0f);
model = glm::scale(model, glm::vec3(0.5, 0.5, 0.5));
model = glm::translate(model, glm::vec3(1.0f, 1.0f, 1.0f));
shader.setMat4("model", model);
shader.setFloat("attenuation", 1.0);

glDrawArrays(GL_TRIANGLES, 0, 36);

Cut Out

• Draw the inside of the box:

92

// draw the inside of the box
glStencilFunc(GL_EQUAL, 1, 0xFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilMask(0xFF);
glClearDepth(0);
glClear(GL_DEPTH_BUFFER_BIT);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE,
GL_TRUE);
glDepthMask(GL_TRUE);
glDepthFunc(GL_GREATER);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f));
shader.setMat4("model", model);

shader.setFloat("attenuation", 0.5);
glDrawArrays(GL_TRIANGLES, 0, 36);

Cut Out

• Draw the outside of the box:

93

// draw the outside of the box
glStencilFunc(GL_EQUAL, 0, 0xFF);
glStencilMask(0xFF);
glClearDepth(1);
glClear(GL_DEPTH_BUFFER_BIT);
glDepthFunc(GL_LESS);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f));
shader.setMat4("model", model);

shader.setFloat("attenuation", 1.0);
glDrawArrays(GL_TRIANGLES, 0, 36);

Picking*

94

Picking

• Last but not least, we want pick the boxes
(again)

95

Picking

• This is straightforward:

96

glfwSetInputMode(window, GLFW_CURSOR,
GLFW_CURSOR_NORMAL);
glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
int StencilVal = -1;
while (!glfwWindowShouldClose(window)){
…
// set uniforms
glm::mat4 model, view, projection ...
shader.use();
shader.setMat4("view", view);
shader.setMat4("projection", projection);
glBindVertexArray(cubeVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);

Picking

• This is straightforward:

97

glReadPixels(lastX, SCR_HEIGHT-lastY,1,1,
GL_STENCIL_INDEX, GL_UNSIGNED_INT,
&StencilVal);

for (unsigned int i = 0; i < 10; i++){
glStencilFunc(GL_ALWAYS, i+1, 0xFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilMask(0xFF);
model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * i;
model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f,
0.3f, 0.5f));
shader.setMat4("model", model);

shader.setFloat("attenuation",
float(i == StencilVal-1)/2.+0.5);
glDrawArrays(GL_TRIANGLES, 0, 36);}

Questions???

98

