
Computer Graphics II
- Bloom

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• Bright light sources and brightly lit regions difficult to convey as the
intensity range of a monitor is limited

• One way to distinguish bright light sources is by making them glow,
light bleeds around the light source

• Effectively gives the viewer the illusion these light sources or bright
regions are intensely bright

2

Introduction

3
*https://commons.wikimedia.org/wiki/File:Elephants_Dream_-_Emo_and_Proog.jpg

• This light bleeding or glow effect is
achieved with a post-processing
effect called bloom

• Bloom gives all brightly lit regions of
a scene a glow-like effect

• An example* with glow:

Bloom
• Bloom works best in combination with HDR rendering

• Common misconception: HDR is the same as bloom

• Different techniques used for different purposes

• Possible to implement bloom with default 8-bit precision framebuffers just
as it is possible to use HDR without the bloom effect

• It is simply that HDR makes bloom more effective to implement

• To implement Bloom, render a lighted scene and extract the scene’s HDR
colorbuffer and an image of the scene with only its bright regions visible

• The extracted brightness image is then blurred and the result added on top
of the original HDR scene image

4

Bloom

• Illustrate this process step by step

• Render a scene with 4 bright light
sources visualized as colored cubes

• Colored light cubes have a brightness
values between 1.5 and 15.0

• If we were to render this to an HDR
colorbuffer the scene looks as
follows:

5

Bloom

• Take this HDR colorbuffer texture
and extract all the fragments that
exceed a certain brightness

• This gives an image that only shows
the bright colored regions as their
fragment intensities exceeded a
certain threshold:

6

Bloom

• Take this thresholded brightness
texture and blur the result

• The strength of the bloom effect is
largely determined by the range and
the strength of the blur filter used

7

Bloom

• Resulting blurred texture is what we
use to get the glow or light-bleeding
effect

• This blurred texture is added on top
of the original HDR scene texture

• Bright regions are extended in both
width and height due to the blur
filter the bright regions of the scene
appear to glow or bleed light

8

Bloom

• Bloom is not a complicated technique, but difficult to get exactly right

• Most of its visual quality is determined by the quality and type of blur
filter used for blurring the brightness regions

• Simply tweaking the blur filter can drastically change the quality of
the bloom effect

9

Bloom

• Following these steps give us the bloom post-processing effect

• The image summarizes the required steps for implementing bloom

10

Extracting Bright Color

11

Extracting Bright Color

• First extract two images from a rendered scene

• Could render the scene twice (rendering to different framebuffer with
different shaders)

• Trick: Multiple Render Targets (MRT) allows to specify more than one
fragment shader output (extract two images in a single render pass)

12

Extracting Bright Color

• Specifying layout location specifier before a fragment shader’s output
can control to which colorbuffer a fragment shader writes to:

13

layout (location = 0) out vec4 FragColor;
layout (location = 1) out vec4 BrightColor;

Extracting Bright Color

• Works only if we have multiple places to write to

• Need multiple colorbuffers attached to the currently bound
framebuffer object

• Framebuffers lecture: specify color attachment when linking a texture
as a framebuffer’s colorbuffer

14

Extracting Bright Color

• Use GL_COLOR_ATTACHMENT0 and GL_COLOR_ATTACHMENT1: two
colorbuffers attached to a framebuffer object:

15

unsigned int hdrFBO;
glGenFramebuffers(1, &hdrFBO);
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
unsigned int colorBuffers[2];
glGenTextures(2, colorBuffers);
for (unsigned int i = 0; i < 2; i++)
{

glBindTexture(GL_TEXTURE_2D, colorBuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// attach texture to framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0+i,GL_TEXTURE_2D,colorBuffers[i],0);

}

Extracting Bright Color

• Explicitly tell OpenGL to render multiple colorbuffers via
glDrawBuffers (otherwise OpenGL only renders to the first color
attachment ignoring all others)

• Passing an array of color attachment enums:

16

unsigned int attachments[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, attachments);

Extracting Bright Color

• Fragment shader uses the layout location specifier the respective
colorbuffer is used to render the fragments to

• Saves extra render pass for extracting bright regions:

17

#version 330 core
layout (location = 0) out vec4 FragColor;
layout (location = 1) out vec4 BrightColor;
[...]
void main()
{

[...] // first do normal lighting calculations and output results
FragColor = vec4(lighting, 1.0);
// if fragment output is higher than threshold, output brightness color
float brightness = dot(FragColor.rgb, vec3(0.2126, 0.7152, 0.0722));
if(brightness > 1.0)

BrightColor = vec4(FragColor.rgb, 1.0);
else

BrightColor = vec4(0.0, 0.0, 0.0, 1.0);
}

Extracting Bright Color

• This shows why bloom works well with HDR rendering

• Render in HDR, color values can exceed 1.0 → allows to specify a
brightness threshold outside the default range

• Without HDR have to set the threshold lower than 1.0 (possible, but
regions are much quicker considered as bright)

• Leads to glow effect becoming too dominant (white glowing snow)

18

Extracting Bright Color

• Two colorbuffers: an image of the scene as normal, and an image of
the extracted bright regions; all obtained in a single render pass

19

Gaussian Blur

20

Gaussian Blur

• In the post-processing blur we simply took
the average of all surrounding pixels (easy
blur but not the best result)

• A Gaussian blur based on Gaussian curve

• Example:

21

Gaussian Blur

• Gaussian larger area close to its center,
using its values as weights to blur an image
(better result as samples close by have a
higher precedence)

• E.g., sample a 32x32 box around a fragment
→ use smaller weights the larger the
distance to the fragment

• Better and more realistic blur known
as a Gaussian blur

22

Gaussian Blur

• Implement a Gaussian blur filter need a two-dimensional box of
weights → obtain from a 2 dimensional Gaussian curve equation

• Problem is that it becomes extremely heavy on performance

• Take a blur kernel of 32 by 32, this would require to sample a texture
a total of 1024 times for each fragment

23

Gaussian Blur

• Gaussian equation property: two dimensional equation separated
into two smaller equations: horizontal and vertical weights

• First do a horizontal blur (horizontal weights) then on the resulting
texture do a vertical blur

• Results are exactly the same, but saves performance: have to do 32 +
32 samples compared to 1024 (known as two-pass Gaussian blur)

24

Normal Gaussian Blur 1. Blur Horizontally 2. Blur Vertically Two-Pass Gaussian Blur

Gaussian Blur

• Means: blur an image at least two times with framebuffer objects

• Implementing a Gaussian blur, need ping-pong framebuffers

• That is a pair of framebuffers, render the other framebuffer’s
colorbuffer into current framebuffer’s colorbuffer (with alternating
shader effect)

• Switch framebuffer to draw in and also the texture to draw with →
first blur the scene’s texture in the first framebuffer, then blur the first
framebuffer’s colorbuffer into the second framebuffer and switch

25

Gaussian Blur

• Gaussian blur’s fragment shader:

26

#version 330 core
out vec4 FragColor;
in vec2 TexCoords;

uniform sampler2D image;

uniform bool horizontal;
float weight[5] = float[] (0.2270270270, 0.1945945946, 0.1216216216, 0.0540540541, 0.0162162162);

void main()
{

vec2 tex_offset = 1.0 / textureSize(image, 0); // gets size of single texel
vec3 result = texture(image, TexCoords).rgb * weight[0];
…

Gaussian Blur

• Gaussian blur’s fragment shader:

27

…
if(horizontal)
{

for(int i = 1; i < 5; ++i)
{

result += texture(image, TexCoords + vec2(tex_offset.x * i, 0.0)).rgb * weight[i];
result += texture(image, TexCoords - vec2(tex_offset.x * i, 0.0)).rgb * weight[i];

}
}
else
{

for(int i = 1; i < 5; ++i)
{

result += texture(image, TexCoords + vec2(0.0, tex_offset.y * i)).rgb * weight[i];
result += texture(image, TexCoords - vec2(0.0, tex_offset.y * i)).rgb * weight[i];

}
}
FragColor = vec4(result, 1.0);

}

Gaussian Blur

• Blurring an image, create two framebuffers, each with a colorbuffer
texture:

28

unsigned int pingpongFBO[2];
unsigned int pingpongColorbuffers[2];
glGenFramebuffers(2, pingpongFBO);
glGenTextures(2, pingpongColorbuffers);
for (unsigned int i = 0; i < 2; i++)
{

glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[i]);
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
pingpongColorbuffers[i], 0);

}

Gaussian Blur

• With an HDR texture, an extracted brightness texture: fill one of the
ping-pong framebuffers with the brightness texture and then blur the
image 10 times (5 times horizontally and 5 times vertically):

29

bool horizontal = true, first_iteration = true;
unsigned int amount = 10;
shaderBlur.use();
for (unsigned int i = 0; i < amount; i++)
{

glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[horizontal]);
shaderBlur.setInt("horizontal", horizontal);
glBindTexture(GL_TEXTURE_2D, first_iteration ? colorBuffers[1] :

pingpongColorbuffers[!horizontal]);
renderQuad();
horizontal = !horizontal;
if (first_iteration)

first_iteration = false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Gaussian Blur

• Blurring the extracted brigtness
texture 5 times gives a blurred image
of all bright regions of a scene

30

Blending Both Textures

31

Blending Both Textures

• With HDR, blurred brightness texture, now need to combine them

• In the final fragment shader, blend both textures (HDR lecture):

32

#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D scene;
uniform sampler2D bloomBlur;
uniform bool bloom;
uniform float exposure;

void main()
{

const float gamma = 2.2;
vec3 hdrColor = texture(scene, TexCoords).rgb;
vec3 bloomColor = texture(bloomBlur, TexCoords).rgb;
if(bloom)

hdrColor += bloomColor; // additive blending
// tone mapping
vec3 result = vec3(1.0) - exp(-hdrColor * exposure);
// also gamma correct while we're at it
result = pow(result, vec3(1.0 / gamma));
FragColor = vec4(result, 1.0);

}

F5…

• … proper glow effect!

33

Note

• Used a simple Gaussian blur filter (only 5 samples in each direction)

• By taking more samples along a larger radius or repeating the blur
filter an extra number of times improves the blur effect

• Quality of the blur directly correlates to the quality of the bloom
effect improving the blur step can make a significant improvement

• Some improvements combine blur filters with varying sized blur
kernels or multiple Gaussian curves to selectively combine weights

34

Questions???

35

