
Computer Graphics II
- Parallax Mapping

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• Parallax mapping is similar to normal mapping, a technique that
boosts a textured surface’s detail and gives it a sense of depth

• While also an illusion, parallax mapping is better in conveying a sense
of depth (with normal mapping realistic results)

• Parallax mapping is a logical follow-up of normal mapping

2

Introduction

• Parallax mapping is a displacement mapping techniques (displace
vertices based on geom. information stored inside a texture)

• One way to do this is, take a plane with roughly 1000 vertices and
displace each of these vertices based on a value in a texture that tells
us the height of the plane at a specific area

• Such a texture containing height values per texel is a height map

3

Introduction

• An example heightmap derived from
the geometric properties of a simple
brick surface looks a bit like this:

4

Introduction

• Spanned over a plane each vertex is
displaced based on the height value in
the heightmap

• Flat plane → rough bumpy surface
based on a material’s geometric
properties

• E.g., flat plane displaced with the
previous heightmap:

5

Introduction

• Problem: needs a large amount of triangles to get a realistic
displacement otherwise the displacement looks too blocky

• Each flat surface may require 1000 vertices → computationally
infeasible

• Achieve similar realism without the need of extra vertices?

• In fact, the previous displaced surface rendered with only 6 vertices

• Rendered with parallax mapping, a displacement mapping technique
that does not require extra vertex data to convey depth

6

Introduction

• Idea is to alter the texture coordinates that it looks like a fragment’s
surface is higher or lower based on the view direction and a
heightmap

• To understand how it works, take a look at the following image of our
brick surface:

7

Introduction

• Brown line values in the heightmap (geometric surface representation
of the brick surface); V view direction (viewDir)

• With displacement, viewer sees surface at point B; plane has no
actual displacement → view direction hits plane at point A

8

Introduction

• Parallax mapping aims to offset the texture coordinates at fragment
position A such that we get texture coordinates at point B

• We then use the texture coordinates at point B for all subsequent
texture samples, making it look like the viewer is actually looking at
point B

9

Introduction

• How to get texture coordinates
at point B from point A?

• Parallax mapping scales the
fragment-to-view direction
vector V by the height at
fragment A

• Scale the length of V to be
equal to a sampled value from
the heightmap H(A) at fragment
position A

10

Introduction

• Take vector P and take its vector
coordinates that align with the
plane as the texture offset

• Works because vector P is
calculated using a height value
from the heightmap → the
higher a fragment’s height, the
more it effectively gets
displaced

11

Introduction

• This gives good results most of
the time, but it is a crude
approximation to get B

• When heights change rapidly
the results tend to look
unrealistic (P will not end up
close to B):

12

Introduction

• Another issue: difficult to figure out which coordinates to retrieve
from P when the surface is arbitrarily rotated

• Parallax mapping in a different coordinate space where the x and y
component of vector P always aligns with the texture’s surface

• → Parallax mapping in tangent space

13

Introduction

• Transforming the fragment-to-view direction V to tangent space, the
transformed P’s x and y component aligned to the surface’s tangent
and bitangent vectors

• Tangent and bitangent vectors are pointing in same direction as
surface’s texture coordinates, can take x and y components of P as the
texture coordinate offset (regardless of the surface’s direction)

14

Parallax Mapping

15

Parallax Mapping

• Use a simple 2D plane and calculate its tangent and bitangent vectors
(before sending it to the GPU, see normal mapping lecture)

• Attach a diffuse texture, a normal map and a displacement map on
the plane

• Here, use parallax mapping with additional normal mapping
(displacement illusion breaks when the lighting does not match)

• Normal maps are often generated from heightmaps, using a normal
map together with the heightmap makes sure the lighting is in place
with the displacement

16

Parallax Mapping

• Actually, displacement map is the inverse of
the heightmap shown at the beginning

• Parallax mapping makes more sense to use the
inverse of the heightmap (also known as a
depthmap)

• Easier to fake depth than height on flat
surfaces

17

Parallax Mapping

• This changes how we perceive parallax
mapping:

• Given points A and B, but now obtain
P by subtracting V from texture
coordinates at A

• Obtain depth values instead of height
values (subtract heightmap values
from 1.0), or inverse texture values in
image-editing software

18

Parallax Mapping

• Parallax mapping implemented in fragment shader (displacement
effect differs all over a triangle’s surface)

• Need to calculate the fragment-to-view direction vector V → need
the view position and a fragment position in tangent space

• Copy of that normal mapping vertex shader:

19

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
layout (location = 3) in vec3 aTangent;
layout (location = 4) in vec3 aBitangent;

out VS_OUT {
vec3 FragPos;
vec2 TexCoords;
vec3 TangentLightPos;
vec3 TangentViewPos;
vec3 TangentFragPos;

} vs_out;

Parallax Mapping

20

uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;

uniform vec3 lightPos;
uniform vec3 viewPos;

void main()
{

vs_out.FragPos = vec3(model * vec4(aPos, 1.0));
vs_out.TexCoords = aTexCoords;

vec3 T = normalize(mat3(model) * aTangent);
vec3 B = normalize(mat3(model) * aBitangent);
vec3 N = normalize(mat3(model) * aNormal);
mat3 TBN = transpose(mat3(T, B, N));

vs_out.TangentLightPos = TBN * lightPos;
vs_out.TangentViewPos = TBN * viewPos;
vs_out.TangentFragPos = TBN * vs_out.FragPos;

gl_Position = projection * view * model * vec4(aPos, 1.0);
}

Parallax Mapping

• Within the fragment shader, implement the parallax mapping logic:

21

#version 330 core
out vec4 FragColor;

in VS_OUT {
vec3 FragPos;
vec2 TexCoords;
vec3 TangentLightPos;
vec3 TangentViewPos;
vec3 TangentFragPos;

} fs_in;

uniform sampler2D diffuseMap;
uniform sampler2D normalMap;
uniform sampler2D depthMap;

uniform float heightScale;

Parallax Mapping

• Within the fragment shader, implement the parallax mapping logic:

22

…

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir);

void main()
{

vec3 viewDir = normalize(fs_in.TangentViewPos - fs_in.TangentFragPos);
vec2 texCoords = fs_in.TexCoords;

vec3 normal = texture(normalMap, texCoords).rgb;
normal = normalize(normal * 2.0 - 1.0);
vec3 diffuse = texture(diffuseMap, texCoords).rgb;
…

}

Parallax Mapping

• The ParallaxMapping function:

23

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{

float height = texture(depthMap, texCoords).r;
vec2 p = viewDir.xy / viewDir.z * (height * heightScale);
return texCoords - p;

}

Parallax Mapping

• Note, division of viewDir.xy by viewDir.z: viewDir vector is normalized
→ viewDir.z in [0,1]

• When viewDir is largely parallel to the surface → z close to 0.0
(division returns larger vector P compared to when viewDir is largely
perpendicular to the surface)

• So increasing P that it offsets the texture coordinates at a larger scale
when looking at a surface from an angle compared to when looking at
it from the top →more realistic results at angles

24

Parallax Mapping

• Some prefer to leave the division out (normal Parallax Mapping could
produce undesirable results at angles)

• Technique is then called Parallax Mapping with Offset Limiting

• Choosing which technique to pick is usually a matter of personal
preference

25

F5…

• … bumpy (left heightScale=0, right 0.1)

26

Parallax Mapping

• Border artifacts at the edge of the parallax mapped plane

• Edges of the plane, the displaced texture coordinates oversample
outside [0, 1] giveing unrealistic results based on the texture’s
wrapping mode(s)

• Discard the fragment whenever it samples outside the default texture
coordinate range:

27

texCoords = ParallaxMapping(fs_in.TexCoords, viewDir);
if(texCoords.x > 1.0 || texCoords.y > 1.0 || texCoords.x < 0.0 || texCoords.y

< 0.0)
discard;

F5…

• …better (left old, right new)

28

Note

• Looks great, but breaks down when looking at it from an angle
(similar to normal mapping) and gives incorrect results with steep
height changes:

29

Note

• Reason: just a crude approximation of displacement mapping

• Trick: steep height changes (works even when looking at an angle)

• E.g., what if we instead of one sample, take multiple samples to find
the closest point to B?

30

Steep Parallax Mapping

31

Introduction

• Steep Parallax Mapping an extension on top of Parallax Mapping

• Uses same principles, but instead of 1 sample it takes multiple
samples to better pinpoint vector P to B

• Better results, even with steep height changes as the accuracy of the
technique is improved by the number of samples

• Steep Parallax Mapping divides total depth range into multiple layers
of the same height/depth

• Each layer sample the depthmap shifting the texture coordinates
along the direction of P until we find a sampled depth value that is
below the depth value of the current layer

32

Steep Parallax
Mapping
• Traverse the depth layers from top down

• Each layer compare depth value to depth
value stored in depthmap

• If layer’s depth value is less than the
depthmap’s value → this layer’s part of
vector P is not below the surface

• Continue until layer’s depth is higher than the value stored in the
depthmap: this point is then below the (displaced) geometric surface

33

Steep Parallax
Mapping
• Depthmap value at 𝑇0: 𝐷 𝑇0 = 0.22 > 0.0
→ continue

• Depthmap value at 𝑇1: 𝐷 𝑇1 = 0.75 > 0.2
→ continue

• Depthmap value at 𝑇2: 𝐷 𝑇2 = 1.00 > 0.4
→ continue
…

• Depthmap value at 𝑇4: 𝐷 𝑇4 = 0.47 < 0.8
→ Vector P at 𝑇4 most viable position of the displaced geometry

• Take the texture coordinate offset to displace the fragment’s texture
coordinates

34

Texture offset

Steep Parallax Mapping

• To implement this, change the ParallaxMapping function:

35

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{

// number of depth layers
const float numLayers = 10;
// calculate the size of each layer
float layerDepth = 1.0 / numLayers;
// depth of current layer
float currentLayerDepth = 0.0;
// the amount to shift the texture coordinates per layer (from vector P)
vec2 P = viewDir.xy * height_scale;
vec2 deltaTexCoords = P / numLayers;

[...]
}

Steep Parallax Mapping

• Then iterate through all the layers, starting from the top, until we find
a depthmap value less than the layer’s depth value:

36

// get initial values
vec2 currentTexCoords = texCoords;
float currentDepthMapValue = texture(depthMap, currentTexCoords).r;

while(currentLayerDepth < currentDepthMapValue)
{

// shift texture coordinates along direction of P
currentTexCoords -= deltaTexCoords;
// get depthmap value at current texture coordinates
currentDepthMapValue = texture(depthMap, currentTexCoords).r;
// get depth of next layer
currentLayerDepth += layerDepth;

}
return currentTexCoords;

F5…

• … much better!

37

Steep Parallax Mapping

• Improve by exploiting one of Parallax Mapping’s properties

• When looking straight onto a surface not much texture displacement
while there is a lot when looking from an angle

• Take less samples when looking straight at a surface and more
samples when looking at an angle (sample the necessary amount):

38

const float minLayers = 8;
const float maxLayers = 32;
float numLayers = mix(maxLayers, minLayers, abs(dot(vec3(0.0, 0.0, 1.0),

viewDir)));

Steep Parallax Mapping

• Problems: technique is based on a finite number of samples →
aliasing effects distinctions between layers can easily be spotted:

39

Steep Parallax Mapping

• Reduce it by taking a larger number of samples → performance

• Several approaches to fix this by interpolating between the position’s
two closest depth layers to find a much closer match to B

• Popular approaches are called Relief Parallax Mapping and Parallax
Occlusion Mapping

• Relief Parallax Mapping most accurate results, but is also more
performance heavy

• Parallax Occlusion Mapping gives almost the same results and more
efficient → preferred approach

40

Parallax Occlusion Mapping

41

Introduction

• Parallax Occlusion Mapping based on same principles as Steep
Parallax Mapping, but instead of taking the texture coordinates of the
first depth layer after a collision going to linearly interpolate between
the depth layer after and before the collision

• Base the weight of the linear interpolation on how far the surface’s
height is from the depth layer’s value of both layers

42

Parallax Occlusion Mapping

• Take a look at the following picture:

• Similar to Steep Parallax Mapping with
extra: linear interpolation between the
two depth layers’ texture coordinates
surrounding the intersected point

• Again, an approximation, but more
accurate

43

Parallax Occlusion Mapping

• Code for Parallax Occlusion Mapping is an extension on top of Steep
Parallax Mapping:

44

// [...] steep parallax mapping code here

// get texture coordinates before collision (reverse operations)
vec2 prevTexCoords = currentTexCoords + deltaTexCoords;

// get depth after and before collision for linear interpolation
float afterDepth = currentDepthMapValue - currentLayerDepth;
float beforeDepth = texture(depthMap, prevTexCoords).r - currentLayerDepth +

layerDepth;

// interpolation of texture coordinates
float weight = afterDepth / (afterDepth - beforeDepth);
vec2 finalTexCoords = prevTexCoords * weight + currentTexCoords * (1.0 - weight);

return finalTexCoords;

F5…

• … less aliasing!

45

Questions???

46

