Computer Graphics |
- Parallax Mapping

Kai Lawonn

Infroduction

* Parallax mapping is similar to normal mapping, a technique that
boosts a textured surface’s detail and gives it a sense of depth

* While also an illusion, parallax mapping is better in conveying a sense
of depth (with normal mapping realistic results)

* Parallax mapping is a logical follow-up of normal mapping

Infroduction

 Parallax mapping is a displacement mapping techniques (displace
vertices based on geom. information stored inside a texture)

* One way to do this is, take a plane with roughly 1000 vertices and
displace each of these vertices based on a value in a texture that tells

us the height of the plane at a specific area
* Such a texture containing height values per texel is a height map

Infroduction

* An example heightmap derived from
the geometric properties of a simple
brick surface looks a bit like this:

Infroduction

e Spanned over a plane each vertex is
displaced based on the height value in
the heightmap

* Flat plane = rough bumpy surface
based on a material’s geometric
properties

* E.g., flat plane displaced with the
previous heightmap:

Infroduction

* Problem: needs a large amount of triangles to get a realistic
displacement otherwise the displacement looks too blocky

 Each flat surface may require 1000 vertices = computationally
infeasible

* Achieve similar realism without the need of extra vertices?
* In fact, the previous displaced surface rendered with only 6 vertices

* Rendered with parallax mapping, a displacement mapping technique
that does not require extra vertex data to convey depth

Infroduction

* |dea is to alter the texture coordinates that it looks like a fragment’s
surface is higher or lower based on the view direction and a
heightmap

* To understand how it works, take a look at the following image of our
brick surface:

Infroduction

* Brown line values in the heightmap (geometric surface representation
of the brick surface); V view direction (viewDir)

* With displacement, viewer sees surface at point B; plane has no
actual displacement = view direction hits plane at point A

¢

Infroduction

 Parallax mapping aims to offset the texture coordinates at fragment
position A such that we get texture coordinates at point B

* We then use the texture coordinates at point B for all subsequent
texture samples, making it look like the viewer is actually looking at

point B

Infroduction

* How to get texture coordinates
at point B from point A?

* Parallax mapping scales the
fragment-to-view direction
vector V by the height at
fragment A

 Scale the length of V to be
equal to a sampled value from
the heightmap H(A) at fragment
position A

Texture
Offset

10

Infroduction

* Take vector P and take its vector
coordinates that align with the
plane as the texture offset H(P)

* Works because vector P is
calculated using a height value B
from the heightmap = the
higher a fragment’s height, the
more it effectively gets Texture
displaced Offset

11

Infroduction

* This gives good results most of

the time, but it is a crude
approximation to get B

* When heights change rapidly
the results tend to look
unrealistic (P will not end up
close to B):

Texture
Offset

12

Infroduction

* Another issue: difficult to figure out which coordinates to retrieve
from P when the surface is arbitrarily rotated

* Parallax mapping in a different coordinate space where the x and y
component of vector P always aligns with the texture’s surface

» - Parallax mapping in tangent space

Infroduction

* Transforming the fragment-to-view direction V to tangent space, the
transformed P’s x and y component aligned to the surface’s tangent
and bitangent vectors

* Tangent and bitangent vectors are pointing in same direction as
surface’s texture coordinates, can take x and y components of P as the
texture coordinate offset (regardless of the surface’s direction)

Parallax Mapping

Parallax Mapping

* Use a simple 2D plane and calculate its tangent and bitangent vectors
(before sending it to the GPU, see normal mapping lecture)

e Attach a diffuse texture, a normal map and a displacement map on
the plane

* Here, use parallax mapping with additional normal mapping
(displacement illusion breaks when the lighting does not match)

* Normal maps are often generated from heightmaps, using a normal
map together with the heightmap makes sure the lighting is in place
with the displacement

Parallax Mapping

* Actually, displacement map is the inverse of
the heightmap shown at the beginning

* Parallax mapping makes more sense to use the
inverse of the heightmap (also known as a
depthmap)

* Easier to fake depth than height on flat
surfaces

Parallax Mapping

* This changes how we perceive parallax
mapping:
* Given points A and B, but now obtain

P by subtracting V from texture
coordinates at A

* Obtain depth values instead of height
values (subtract heightmap values
from 1.0), or inverse texture values in
image-editing software

Texture
Offset

Parallax Mapping

 Parallax mapping implemented in fragment shader (displacement
effect differs all over a triangle’s surface)

* Need to calculate the fragment-to-view direction vector V 2 need
the view position and a fragment position in tangent space

* Copy of that normal mapping vertex shader:

#version 330 core

layout (location = @) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
layout (location = 3) in vec3 aTangent;
layout (location = 4) in vec3 aBitangent;

out VS_OUT {
vec3 FragPos;
vec2 TexCoords;
vec3 TangentLightPos;
vec3 TangentViewPos;
vec3 TangentFragPos;
} vs_out;

Parallax Mapping

uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;

uniform vec3 lightPos;
uniform vec3 viewPos;

void main()

{

vs_out.FragPos = vec3(model * vec4(aPos, 1.9));
vs_out.TexCoords = aTexCoords;

vec3 T = normalize(mat3(model) * aTangent);
vec3 B = normalize(mat3(model) * aBitangent);
vec3 N = normalize(mat3(model) * aNormal);

mat3 TBN = transpose(mat3(T, B, N));

vs_out.TangentLightPos
vs_out.TangentViewPos
vs_out.TangentFragPos

TBN * lightPos;
TBN * viewPos;
TBN * vs_out.FragPos;

gl Position = projection * view * model * vec4(aPos, 1.0);

Parallax Mapping

e Within the fragment shader, implement the parallax mapping logic:

#version 330 core
out vec4 FragColor;

in VS_OUT {
vec3 FragPos;
vec2 TexCoords;
vec3 TangentLightPos;
vec3 TangentViewPos;
vec3 TangentFragPos;
} fs_in;

uniform sampler2D diffuseMap;
uniform sampler2D normalMap;

uniform sampler2D depthMap;

uniform float heightScale;

Parallax Mapping

e Within the fragment shader, implement the parallax mapping logic:

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir);

void main()

{
vec3 viewDir = normalize(fs_in.TangentViewPos - fs_in.TangentFragPos);
vec2 texCoords = fs_in.TexCoords;

vec3 normal = texture(normalMap, texCoords).rgb;
normal = normalize(normal * 2.0 - 1.0);
vec3 diffuse = texture(diffuseMap, texCoords).rgb;

Parallax Mapping

* The ParallaxMapping function:

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)

{
float height = texture(depthMap, texCoords).r;
vec2 p = viewDir.xy / viewDir.z * (height * heightScale);
return texCoords - p;

Parallax Mapping

* Note, division of viewDir.xy by viewDir.z: viewDir vector is normalized
—> viewDir.z in [0,1]

* When viewDir is largely parallel to the surface = z close to 0.0
(division returns larger vector P compared to when viewDir is largely
perpendicular to the surface)

* So increasing P that it offsets the texture coordinates at a larger scale
when looking at a surface from an angle compared to when looking at
it from the top = more realistic results at angles

Parallax Mapping

* Some prefer to leave the division out (normal Parallax Mapping could
produce undesirable results at angles)

e Technique is then called Parallax Mapping with Offset Limiting

* Choosing which technique to pick is usually a matter of personal
preference

FS5...

26

Parallax Mapping

e Border artifacts at the edge of the parallax mapped plane

* Edges of the plane, the displaced texture coordinates oversample
outside [0, 1] giveing unrealistic results based on the texture’s
wrapping mode(s)

* Discard the fragment whenever it samples outside the default texture
coordinate range:

texCoords = ParallaxMapping(fs_in.TexCoords, viewDir);

if(texCoords.x > 1.0 || texCoords.y > 1.0 || texCoords.x < 0.0 || texCoords.y
< 0.0)

discard;

27

FS5...

...better (left old, right new)

28

Note

* Looks great, but breaks down when looking at it from an angle
(similar to normal mapping) and gives incorrect results with steep
height changes:

29

Note

* Reason: just a crude approximation of displacement mapping
* Trick: steep height changes (works even when looking at an angle)

* E.g., what if we instead of one sample, take multiple samples to find
the closest point to B?

30

Steep Parallax Mapping

Infroduction

 Steep Parallax Mapping an extension on top of Parallax Mapping

e Uses same principles, but instead of 1 sample it takes multiple
samples to better pinpoint vector P to B

* Better results, even with steep height changes as the accuracy of the
technique is improved by the number of samples

 Steep Parallax Mapping divides total depth range into multiple layers
of the same height/depth

* Each layer sample the depthmap shifting the texture coordinates
along the direction of P until we find a sampled depth value that is
below the depth value of the current layer

Steep Parallax
Mapping \

* Traverse the depth layers from top down

* Each layer compare depth value to depth
value stored in depthmap

* If layer’s depth value is less than the
depthmap’s value = this layer’s part of
vector P is not below the surface

* Continue until layer’s depth is higher than the value stored in the
depthmap: this point is then below the (displaced) geometric surface

Steep Parallax
Mapping v |

* Depthmap value at Ty: D(T,) = 0.22 > 0.0
—> continue

* Depthmap value at T;: D(Ty) = 0.75 > 0.2
— continue

* Depthmap value at T,: D(T,) = 1.00 > 0.4
— continue

* Depthmap value at T,: D(T,) = 0.47 < 0.8
- Vector P at T, most viable position of the displaced geometry

* Take the texture coordinate offset to displace the fragment’s texture
coordinates

34

Steep Parallax Mapping

* To implement this, change the ParallaxMapping function:

vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{

// number of depth layers

const float numLayers = 10;

// calculate the size of each layer

float layerDepth = 1.0 / numLayers;

// depth of current layer

float currentLayerDepth = 0.0;

// the amount to shift the texture coordinates per layer (from vector P)

vec2 P = viewDir.xy * height scale;

vec2 deltaTexCoords = P / numLayers;

[...]

35

Steep Parallax Mapping

* Then iterate through all the layers, starting from the top, until we find
a depthmap value less than the layer’s depth value:

// get initial values
vec2 currentTexCoonrds
float currentDepthMapValue

texCoords;
texture(depthMap, currentTexCoords).r;

while(currentLayerDepth < currentDepthMapValue)

{
// shift texture coordinates along direction of P
currentTexCoords -= deltaTexCoords;
// get depthmap value at current texture coordinates
currentDepthMapValue = texture(depthMap, currentTexCoords).r;
// get depth of next layer
currentLayerDepth += layerDepth;

}

return currentTexCoords;

FS5...

e ... much better!

Steep Parallax Mapping

* Improve by exploiting one of Parallax Mapping’s properties

* When looking straight onto a surface not much texture displacement
while there is a lot when looking from an angle

* Take less samples when looking straight at a surface and more
samples when looking at an angle (sample the necessary amount):

const float minLayers = 8;

const float maxLayers = 32;

float numLayers = mix(maxLayers, minlLayers, abs(dot(vec3(0.0, 0.0, 1.0),
viewDir)));

Steep Parallax Mapping

* Problems: technique is based on a finite number of samples =2
aliasing effects distinctions between layers can easily be spotted:

|l FONE . o
Ay T Rl N

39

Steep Parallax Mapping

* Reduce it by taking a larger number of samples = performance

* Several approaches to fix this by interpolating between the position’s
two closest depth layers to find a much closer match to B

* Popular approaches are called Relief Parallax Mapping and Parallax
Occlusion Mapping

* Relief Parallax Mapping most accurate results, but is also more
performance heavy

 Parallax Occlusion Mapping gives almost the same results and more
efficient = preferred approach

Parallax Occlusion Mapping

Infroduction

 Parallax Occlusion Mapping based on same principles as Steep
Parallax Mapping, but instead of taking the texture coordinates of the
first depth layer after a collision going to linearly interpolate between
the depth layer after and before the collision

e Base the weight of the linear interpolation on how far the surface’s
height is from the depth layer’s value of both layers

Parallax Occlusion Mapping

* Take a look at the following picture:

* Similar to Steep Parallax Mapping with @
extra: linear interpolation between the
two depth layers’ texture coordinates
surrounding the intersected point

* Again, an approximation, but more
accurate

43

Parallax Occlusion Mapping

e Code for Parallax Occlusion Mapping is an extension on top of Steep
Parallax Mapping:

// [...] steep parallax mapping code here

// get texture coordinates before collision (reverse operations)
vec2 prevTexCoords = currentTexCoords + deltaTexCoords;

// get depth after and before collision for linear interpolation

float afterDepth = currentDepthMapValue - currentLayerDepth;

float beforeDepth = texture(depthMap, prevTexCoords).r - currentLayerDepth +
layerDepth;

// interpolation of texture coordinates
float weight = afterDepth / (afterDepth - beforeDepth);
vec2 finalTexCoords = prevTexCoords * weight + currentTexCoords * (1.0 - weight);

return finalTexCoords;
44

FS5...

e ... less aliasing!

45

QO

Q
U
s
stion
g7
PP

