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Introduction

• All our scenes are filled with polygons consisting of hundreds or 
maybe thousands of flat triangles 

• Boosted the realism by pasting 2D textures on triangles

• Take a close look and it is easy to see the underlying flat surfaces

• Most real-life surface are not flat however and exhibit a lot of 
(bumpy) details
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Introduction

• A brick surface is rough and not 
completely flat: contains sunken 
cement stripes and detailed little holes 
and cracks 

• If we were to view such a brick surface 
in a lighted scene the immersion gets 
easily broken 
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Introduction
• Lighting not taking small cracks and holes 

into account, completely ignores the deep 
stripes between the bricks 

• Surface looks perfectly flat 

• Partly solve the flatness by using a specular 
map (pretend some surfaces are less lit 
due to depth or other details), that’s more 
of a hack than a real solution 

• Need a way to inform the lighting system 
about all the little depth-like details of the 
surface
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Introduction

• From a light’s perspective: how comes the surface is lit as a 
completely flat surface? → surface’s normal vector 

• From the lighting algorithm’s: way it determines the shape of an 
object is by its perpendicular normal vector 

• Brick surface has a single normal vector → surface is uniformly lit
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Introduction

• What if, instead of a per-surface normal that is the same for each 
fragment, use a per-fragment normal that is different for each 
fragment 

• Slightly deviate the normal vector based on a surface’s little details; as 
a result this gives the illusion the surface is a lot more complex:
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Introduction

• Using per-fragment normal leads to the illusion a surface consists of 
tiny little planes (perpendicular to the normal vectors) giving the 
surface an enormous boost in detail 

• This technique to use per-fragment normals compared to per-surface 
normals is called normal mapping or bump mapping:
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Normal Mapping
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Normal Mapping

• Need a per-fragment normal 

• Similar to diffuse maps and specular maps, can use a 2D texture to 
store per-fragment data 

• Aside from color and lighting data we can also store normal vectors in 
a 2D texture 

• This way we can sample from a 2D texture to get a normal vector for 
that specific fragment
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Normal Mapping

• Normal vectors are geometric entities, textures used for color 
information → storing normal vectors in a texture not obvious 

• Color vectors in a texture represented as a 3D vector with an r, g and 
b component 

• Can store a normal vector’s x, y and z component in the respective 
color components 

• Normal vectors range between -1 and 1 so they’re first mapped to 
[0,1]:

10

vec3 rgb_normal = normal * 0.5 + 0.5; // transforms from [-1,1] to [0,1]



Normal Mapping

• With normal vectors transformed to an RGB 
color component like this, can store a per-
fragment normal derived from the shape of a 
surface onto a 2D texture 

• Example normal map of the brick surface:
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Normal Mapping

• Almost all normal maps have a blue-ish tint 

• Normals pointing outwards (towards the positive 
z-axis) are (0, 0, 1): a blue-ish color 

• Slight color deviations are normals that are 
slightly off from the general positive z direction

• E.g., top of each brick, color tends to green (top  
have normals pointing in the positive y direction 
(0, 1, 0) → green)
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Normal Mapping

• With a plane looking at the positive z-axis, 
these diffuse texture and normal map can 
be used to apply normal mapping 

• This normal map is different from the previous one (OpenGL reads 
texture coordinates with the y (or V) coordinates reversed) → y (or 
green) component reversed (green colors pointing downwards) 

• If we forget this, lighting will be incorrect
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Normal Mapping

• Load both textures, bind them, and 
render a plane with the following changes 
in a lighting fragment shader:
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uniform sampler2D normalMap;

void main()
{

// obtain normal from normal map in range [0,1] 
normal = texture(normalMap, fs_in.TexCoords).rgb;
// transform normal vector to range [-1,1] 
normal = normalize(normal * 2.0 - 1.0);
[...]
// proceed with lighting as normal

}



F5…

• … a brick wall with normal
mapping
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Issue

• Normal map had normal vectors that all roughly pointed in the 
positive z direction, just like the plane’s surface normal

• What if we used the same normal map on a plane with a surface 
normal vector pointing in the positive y direction?
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Issue

• Lighting doesn’t look right → Sampled normals point roughly in the 
positive z direction, but should point in the positive y direction 

• Result is lighting thinks the surface’s normals are the same as before
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Issue

• Sampled normals approximately look like on this surface:

• Normals roughly point in the positive z direction, but should be along 
the positive y direction 

18



Issue

• Possible solution: define a normal map for each possible direction of 
a surface 

• For a cube, need 6 normal maps, but with advanced models with a lot 
possible surface directions this becomes an infeasible approach

• Another solution: lighting in a coordinate space where the normal 
map vectors always point roughly in the positive z direction 

• Other lighting vectors are then transformed relative to this 

• Then, can always use the same normal map, regardless of orientation

19



Tangent Space
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Introduction

• Vectors in a normal map are expressed in tangent space (normals
point roughly in the positive z direction) 

• Tangent space is local to the surface of a triangle: normals are relative 
to the local reference frame of the individual triangles

• Local space of the normal map’s vectors; they’re all defined pointing 
in the positive z direction regardless of the final transformed direction 

• Using a specific matrix we can then transform normal vectors from 
this local tangent space to world or view coordinates, orienting them 
along the final mapped surface’s direction

21



Introduction

• Assume having incorrect normal mapped surface (previous example) 

• Normal map is defined in tangent space → calculate a matrix to 
transform normals from tangent space to a different space (aligned 
with the surface’s normal direction) 

• This case: normal vectors pointing roughly in the positive y direction 

• Calculate such a matrix for any type of surface → properly align the 
tangent space’s z direction to any surface’s normal direction
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TNB Matrix

• Matrix is called 𝑇𝐵𝑁 matrix: tangent, bitangent and normal vector 

• These are the vectors we need to construct this matrix 

• Change-of-basis matrix that transforms tangent-space vector to 
different coordinate space needs three perpendicular vectors (aligned 
along the surface of a normal map: up, right and forward vector -
remember camera lecture)
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TNB Matrix

• Up vector is the surface’s normal vector 

• The right and forward vector are the tangent and bitangent vector 
respectively:
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TNB Matrix

• Calculating the tangent and 
bitangent is not as straightforward as 
the normal vector 

• Direction of the normal map’s 
tangent and bitangent vector align 
with surface’s texture coordinates 

• Use this to calculate tangent and 
bitangent for each surface 

25



TNB Matrix
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TNB Matrix
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TNB Matrix

28



TNB Matrix
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Tangents and Bitangents

• Previously, had a simple 2D plane looking at the positive z direction 

• Now, normal mapping using tangent space → independent of 
orientation 

• Going to manually calculate this surface’s tangent and bitangent 
vectors
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Tangents and Bitangents

• Assuming the plane is built up from the following vectors (with 1, 2, 3 
and 1, 3, 4 as its two triangles):
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// positions
glm::vec3 pos1(-1.0f,  1.0f, 0.0f);
glm::vec3 pos2(-1.0f, -1.0f, 0.0f);
glm::vec3 pos3( 1.0f, -1.0f, 0.0f);
glm::vec3 pos4( 1.0f,  1.0f, 0.0f);
// texture coordinates
glm::vec2 uv1(0.0f, 1.0f);
glm::vec2 uv2(0.0f, 0.0f);
glm::vec2 uv3(1.0f, 0.0f);  
glm::vec2 uv4(1.0f, 1.0f);
// normal vector
glm::vec3 nm(0.0f, 0.0f, 1.0f);



Calculate

• First calculate the first triangle’s edges and delta UV coordinates:
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// triangle 1
// ----------
glm::vec3 edge1 = pos2 - pos1;
glm::vec3 edge2 = pos3 - pos1;
glm::vec2 deltaUV1 = uv2 - uv1;
glm::vec2 deltaUV2 = uv3 - uv1;



Calculate

• Start following the equation:
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float f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);

tangent1.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
tangent1.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
tangent1.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);

bitangent1.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
bitangent1.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
bitangent1.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);



Tangents and Bitangents

• Triangle flat shape → only calculate a single tangent/bitangent pair 
per triangle (same for each of the triangle’s vertices)

• Note, most implementations (model loaders, terrain generators) have 
triangles that share vertices with other triangles 

• Then, usually average the vertex properties like normals and 
tangents/bitangents for each vertex to get a smoother result 

• Here, plane’s triangles also shares some vertices, but both triangles 
are parallel → no need to average
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Tangent Space Normal Mapping

• Have to create a TBN matrix in the shaders 

• For this, pass the calculated tangent and bitangent vectors to the 
vertex shader as vertex attributes:
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#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
layout (location = 3) in vec3 aTangent;
layout (location = 4) in vec3 aBitangent;



Tangent Space Normal Mapping

• Then, create the TBN matrix: 
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void main()
{

…
vec3 T = normalize(vec3(model * vec4(aTangent,   0.0))); 
vec3 B = normalize(vec3(model * vec4(aBitangent, 0.0))); 
vec3 N = normalize(vec3(model * vec4(aNormal,    0.0))); 
mat3 TBN = mat3(T, B, N)
…

}



No need for the bitangent variable in the vertex shader 

All three TBN vectors are perpendicular, so calculate the bitangent in 
the vertex shader by: vec3 B = cross(T, N);
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Tangent Space Normal Mapping

• What now with the TBN matrix?

• Two ways to use a TBN matrix for normal mapping:
• 1.  Take TBN matrix, give it to the fragment shader → transform sampled 

normal from tangent space to world space with TBN; the normal is then in the 
same space as the other lighting variables

• 2.  Take inverse of TBN matrix: transform not the normal, but the other 
relevant lighting variables to tangent space; the normal is then again in the 
same space as the other lighting variables 
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Tangent Space Normal Mapping

• 1. Pass the TBN matrix to the fragment shader 

• Multiply the sampled tangent space normal with this TBN matrix to 
transform the normal vector to the same reference space as the other 
lighting vectors 

• This way all the lighting calculations (specifically the dot product) 
make sense
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Tangent Space Normal Mapping

• Sending the TBN matrix to the fragment shader: 
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out VS_OUT {
vec3 FragPos;
vec2 TexCoords;
mat3 TBN;

} vs_out;
…
void main()
{ 

…
vs_out.TBN = mat3(T, B, N);

}



Tangent Space Normal Mapping

• Fragment shader input variable:

• TBN matrix update the normal mapping code (tangent-to-world space 
transformation): 
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in VS_OUT {
vec3 FragPos;
vec2 TexCoords;
mat3 TBN;

} fs_in;

normal = texture(normalMap, fs_in.TexCoords).rgb; 
normal = normalize(normal * 2.0 - 1.0);
normal = normalize(fs_in.TBN * normal);



Tangent Space Normal Mapping

• 2. Take the inverse of TBN to transform relevant world-space vectors 
to the space the sampled normal vectors are in: tangent space

• The construction of the TBN matrix remains the same, but we first 
inverse the matrix before sending it to the fragment shader:

• TBN orthogonal matrix: 𝑇𝐵𝑁−1 = 𝑇𝐵𝑁𝑇
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Vs_out.TBN = transpose(mat3(T, B, N)); 



Tangent Space Normal Mapping

• Within fragment shader, do not transform the normal vector, but 
transform other relevant vectors to tangent space (lightDir, viewDir)

• Then, each vector is in the same coordinate system: tangent space
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void main()
{           

vec3 normal = texture(normalMap, fs_in.TexCoords).rgb;
normal = normalize(normal * 2.0 - 1.0); 

vec3 lightDir = fs_in.TBN * normalize(lightPos - fs_in.FragPos); 
vec3 viewDir = fs_in.TBN * normalize(viewPos - fs_in.FragPos);
…

} 



Tangent Space Normal Mapping
• 2. approach more work and requires more matrix multiplications in the 

fragment shader (which are slightly expensive), why bother with this?

• Transforming vectors from world to tangent space advantage: can 
transform relevant vectors to tangent space in the vertex shader (instead of 
in the fragment shader) 

• Works, because lightPos and viewPos do not change each fragment run 

• fs_in.FragPos can also calculate its tangent-space position in the vertex 
shader (let fragment interpolate it) 

• Basically, no need to transform any vector to tangent space in the fragment 
shader (necessary with the first approach as sampled normal vectors are 
specific to each fragment shader run)
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Tangent Space Normal Mapping

• Instead sending the inverse of TBN to fragment shader, send tangent-
space light position, view position and vertex position to the fragment 
shader (saves matrix multiplications in the fragment shader) 

• Nice optimization as the vertex shader runs considerably less often 
than the fragment shader 

• This is also the reason why this approach is often the preferred 
approach
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Tangent Space Normal Mapping
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out VS_OUT {
vec3 FragPos;
vec2 TexCoords;
vec3 TangentLightPos;
vec3 TangentViewPos;
vec3 TangentFragPos;

} vs_out;

uniform vec3 lightPos;
uniform vec3 viewPos;

void main()
{

…
mat3 TBN = transpose(mat3(T, B, N));    
vs_out.TangentLightPos = TBN * lightPos;
vs_out.TangentViewPos = TBN * viewPos;
vs_out.TangentFragPos = TBN * vs_out.FragPos;

}



Tangent Space Normal Mapping

• Fragment shader: use these new input variables to calculate lighting 
in tangent space 

• As the normal vector is already in tangent space the lighting makes 
sense

• Can orient plane in any way and the lighting would still be correct:
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glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians((float)glfwGetTime() * -10.0f), 
glm::normalize(glm::vec3(1.0, 0.0, 1.0))); // rotate the quad
…
renderQuad();



F5…

• …nice wall
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One Last Thing
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One Last Thing

• Last technique to slightly improve its quality without too much extra 
cost

• When tangent vectors are calculated on larger meshes, sharing 
vertices the tangent vectors are generally averaged to give nice and 
smooth results

• Problem is that TBN vectors could end up non-perpendicular →
resulting TBN matrix would no longer be orthogonal 

• Normal mapping will be only slightly off with a non-orthogonal TBN 
matrix
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One Last Thing

• With the Gram-Schmidt process, can re-orthogonalize the TBN 
vectors such that each vector is again perpendicular to the other 
vectors (vertex shader):
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vec3 T = normalize(vec3(model * vec4(aTangent, 0.0))); 
vec3 N = normalize(vec3(model * vec4(aNormal, 0.0)));
// re-orthogonalize T with respect to N
T = normalize(T - dot(T, N) * N);
// then retrieve perpendicular vector B with the cross product of T and N
vec3 B = cross(N, T);

mat3 TBN = mat3(T, B, N)



Questions???
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