
Computer Graphics
- Transformations

J.-Prof. Dr. habil. Kai Lawonn

Introduction

• We know how to create objects, color them and/or give them a
detailed appearance using textures

• But they are static objects

• Could change their vertices and re-configuring their buffers each
frame to move them → cumbersome and costs quite some
processing power

• Better: transform an object by using (multiple) matrix objects

2

Introduction

• Matrices are very powerful mathematical constructs that are very
important in computer graphics

• This lecture is about a small introduction to vectors and matrices

3

Vectors

4

Introduction

• A vector has a direction and a magnitude (tuple of numbers)

• Vectors can have any dimension, but we usually work with
dimensions of 2 to 4

5

Operations

• In GLSL vectors can be defined by vec2, vec3, and vec4

• GLSL offers simple scalar operations:

6

vec2 p = vec2(2,3);
p = p + 2; //p = (4,5)
p-= 3; //p = (1,2)
vec2 q = -p; //q = (-1,-2)

Operations

• Addition of two vectors is defined as a component-wise addition:

7

vec3 p = vec3(1,2,3);
vec3 q = vec3(4,5,6);
vec3 res = p + q; //res = (5,7,9)

Operations

• Length of a vector→ Pythagoras theorem

8

vec3 v = vec3(2,3,3);
float L = length(v); //L = sqrt(22)

Operations

• Normalizing of a vector→ divide by length

9

vec3 v = vec3(2,3,3);
vec3 n = normalize(v); //n = v/|v|

Operations

• Dot product: component-wise multiplication and addition afterwards

• In this case three dimensional vectors

10

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6);
float d = dot(v,w); //d=4+10+18=32

Operations

• Dot product with the vector itself is the length squared

11

Operations

• Dot product: also the lengths multiplied with cos of the angle
between both vector

12

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6);
float d = dot(v,w); //d=4+10+18=32
float len_v = length(v);
float len_w = length(w);
float a = acos(d/(len_v*len_w));

Operations

Multiplying two vectors results in a component-wise multiplication:

13

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6);
vec3 u = v*w; // = (4,10,18)

Operations

• Useful conclusion:

14

Operations

• Relation:

15

Operations

• Why is this useful?

• Remember when we determined the orthogonal projection:

16

a

b
p

w=p-a

v=b-a

Operations

• Calculate the orthogonal projection of a point onto the plane

17

Operations

• Calculate the orthogonal projection of a point onto the plane

• Given is a point 𝑞 on the plane and a normalized normal 𝑛0
• Task: project 𝑝 orthogonally on the plane

18

Operations

• Calculate the orthogonal projection of a point onto the plane

• Given is a point 𝑞 on the plane and a normalized normal 𝑛0
• Task: project 𝑝 orthogonally on the plane

19

Operations

• Calculate the orthogonal projection of a point onto the plane

• Given is a point 𝑞 on the plane and a normalized normal 𝑛0
• Task: project 𝑝 orthogonally on the plane

20

Operations

• Example:

21

Operations

• Example:

22

Operations

• Cross product of two vectors results in an
orthogonal vectors

23

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6);

vec3 u = cross(v,w); //u = (-3,6,-3)

Operations

• The enclosing area can be determined, too

24

Matrices

25

Introduction

• A matrix is basically a rectangular array of numbers, symbols and/or
expressions

• Each individual item in a matrix is called an element of the matrix

• Example of a 2x3 matrix:

26

mat3x2 M = mat3x2(1,4,2,5,3,6); //column wise
//matnxm n,m ∈ {2,3,4}, m ≠ n
//matn, n ∈ {2,3,4}

Introduction

• Indexing

• Constructions

27

vec3 col0 = vec3(1, 2, 3);
vec3 col1 = vec3(4, 5, 6);
vec3 col2 = vec3(7, 8, 9);
mat3 M = mat3(col0, col1, col2); //set columns
float M20 = M[2][0]; // = 7 (col2[0])
float M11 = M[1].y; // = 5 (col1.y)

Indexing

Matrices are indexed by:

• (Math)

(i,j) where i is the row and j is the column

i x j matrix (row,column)

• (GLSL)

[i][j] where i is the column and j is the row

i x j matrix (column,row)

28

Operations

• GLSL allows scalar operations:

29

mat2 M = mat2(1,2,3,4);

mat2 N = M+2;

mat2 O = M*2;

Operations

• Of course standard operations:

30

mat2 M = mat2(1,2,3,4);

mat2 N = mat2(1,3,4,6);

mat2 O = M+N;

Operations

• Matrix-matrix multiplication

31

mat2 M = mat2(1,2,3,4);

mat2 N = mat2(1,3,4,6);

mat2 O = M*N;

Operations

• Matrix-vector multiplication

32

mat2 M = mat2(1,2,3,4);

vec2 v = vec2(1,3);

vec2 o = M*v;

Operations

• Identity matrix

33

mat3 Id = mat3(1);

vec2 v = vec2(1,2,3);

vec2 o = Id*v;

Operations

• Scaling the vector 𝑣 = (3,2) along the x-axis by 0.5 and along the y-
axis by 2:

34

Operations

• The scaling operation is a non-uniform scale, because the scaling
factor is not the same for each axis

• If the scalar would be equal on all axes it would be called a uniform
scale

35

Operations

• Constructing a transformation matrix that does the scaling

• Identity matrix multiplied 1 with the corresponding vector element →
change the 1s in the identity matrix to the scaling factor

• Represent the scaling variables as S = (𝑠1, 𝑠2, 𝑠3), then define scaling
matrix:

• For now ignore the last component (1)

36

Operations

• Additionally, we want to translate the vector after scaling

• The translating variables are represented as T = (𝑡1, 𝑡2, 𝑡3), then
define the matrix:

37

Operations

• Example: 𝑣 = 2,3,3 , 𝑆 = 2,3,2 , 𝑇 = (0, −7, −2)

38

Homogeneous Coordinates

• The w component of a vector is also known as a homogeneous
coordinate

• 3D vector from a homogeneous vector → divide x, y, z by w

• (Did not notice this because w component was 1.0)

• Advantages: allows to do translations on 3D vectors (without a w or
0 can’t translate)

39

Operations

• Next step: rotations

• A rotation in 2D or 3D is represented with an angle

• Angles could be in degrees or radians (whole circle has 360° or 2𝜋 in
radians)

40

Rotations

• Rotation in 2D requires an angle and a direction (clock-wise (cw) /
counter-clock-wise (ccw))

• Suppose we want to ccw rotate a vector 𝑤 = (𝑥, 𝑦) around an angle
𝛼

41

Rotations

• First, compute 𝑣

42

Rotations

• First, compute 𝑣

43

Rotations

• Then, compute 𝑢

44

Rotations

• All together:

45

Rotations

• All together:

46

Rotations

• Rotations in 3D are specified with an angle and a rotation axis

• The 2D rotation helps us to define 3D rotations:

47

Signs are different to ensure the ccw
rotation

Rotations

• Using the rotation matrices → position vectors can be rotate around
one of the three unit axes

• Also possible to combine them (e.g., first rotate around the x-axis,
then around the y-axis)

• This quickly introduces a problem called Gimbal lock → normally we
have three degrees of freedom, after rotating it may happen that two
axes coincide such that we loose one degree of freedom

48

Rotations

• Better solution is to rotate around an arbitrary unit vector 𝑛

• Instead of combining the rotation matrices

• Even this matrix does not completely prevent gimbal lock (but it gets
a lot harder)

• To truly prevent Gimbal locks, need quaternions (safer and
computationally friendly)

49

Combining Matrices

• True power from using matrices for transformations is the
combination of multiple transformations in a single matrix

• Say we have a vector (𝑥, 𝑦, 𝑧) and we want to scale it by 2 and then
translate it by (1,2,3)

• → Need a translation and a scaling matrix:

50

Combining Matrices

• Note, first a translation and then a scale transformation

• Matrix multiplication is not commutative (order is important!)

• Right-most matrix is first multiplied with the vector → read the
multiplications from right to left

• When combining matrices it is advised to do:
• 1. scaling
• 2. rotations
• 3. Translations

• E.g., if you would first do a translation and then scale, the translation
vector would also scale!

51

Combining Matrices

• Running the final transformation matrix on our vector results in the
following vector:

52

GLM

53

Introduction

• Now time to use transformations

• OpenGL does not have any form of matrix or vector knowledge built
in

• But, there is an easy-to-use and tailored-for-OpenGL mathematics
library called GLM

54

Introduction

• GLM stands for OpenGL
Mathematics (header-only
library → only include no
linking and compiling)

• GLM can be downloaded:
https://glm.g-truc.net

55

https://glm.g-truc.net/0.9.9/index.html

Introduction

• Copy the root directory (glm) of the header files
into your includes folder

56

Introduction

• Most of GLM’s functionality can be found in only 3 headers files:

57

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

Introduction

• First, translate a vector of (1,0,0) by (1,1,0)

• (Note that we define it as a glm::vec4 with its homogenous
coordinate set to 1.0):

58

glm::vec4 vec(1.0f, 0.0f, 0.0f, 1.0f);
glm::mat4 trans = glm::mat4(1.0); // not an identity matrix per default

trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
vec = trans * vec;
std::cout << vec.x << vec.y << vec.z << std::endl;

!!!Note: glm::mat4 trans = glm::mat4(1.0);
this is different than in the book!!!

Introduction

• First define a vector named vec using GLM’s built-in vector class
• Next define a mat4 named trans (it is set as the identity matrix)
• Next create a transformation matrix by passing trans to the glm::translate

function, together with a translation vector (given matrix is multiplied with
a translation matrix and the resulting matrix is returned)

• Then, multiply vec by the transformation matrix and output the result

59

glm::vec4 vec(1.0f, 0.0f, 0.0f, 1.0f);
glm::mat4 trans = glm::mat4(1.0); // not an identity matrix per default

trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
vec = trans * vec;
std::cout << vec.x << vec.y << vec.z << std::endl;

Introduction

• Now, translate, scale, and rotate the textured wall from last lecture

• First, rotate the wall by 90 degrees counter-clockwise

• Then, scale it by 0.5, thus making it twice as small

• Finally, translate it:

60

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));

Introduction

• GLM expects its angles in radians → convert the degrees to radians using
glm::radians

• Note 1: Textured rectangle is on the XY plane → rotate around the Z-axis

• GLM automatically multiplies the matrices together (resulting in one
transformation matrix)

• Note 2: Read the transformations from bottom to top!!!

61

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));

Introduction

• Transformation matrix should be passed to the shader

• So, use a mat4 uniform and multiply the position vector by the
matrix

62

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
uniform mat4 transform;

out vec2 TexCoord;
void main()
{
gl_Position = transform*vec4(aPos, 1.0);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);
}

Introduction

GLSL also has mat2 and mat3 types that allow for swizzling-like
operations just like vectors.

63

mat3 Matrix;
Matrix[1].yzx = vec3(3.0, 1.0, 2.0);

Introduction

• Still need to pass the transformation matrix to the shader though:

• 1. Is the uniform’s location
• 2. tells OpenGL how many matrices are send = 1
• 3. asks if the matrix should be transposed (swap the columns and rows, no

as GLM gives the right matrix)
• 4. is the actual matrix data, but GLM stores their matrices not in the exact

way that OpenGL likes to receive them so transform them with GLM’s built-
in function value_ptr

64

unsigned int transformLoc = glGetUniformLocation(ourShader.ID, "transform");
glUniformMatrix4fv(transformLoc, 1, GL_FALSE, glm::value_ptr(trans));

F5…

…nice!

65

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));

F5…

…nice, too!

But be careful with the order!

66

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));

Rotation

• To rotate the wall over time use this code in the game loop

• (Needs to update the matrix each render iteration):

67

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, (float)glfwGetTime(), glm::vec3(0.0, 0.0, 1.0));
glUniformMatrix4fv(transformLoc, 1, GL_FALSE, glm::value_ptr(trans));

F5…

… rotating beauty!

68

Complex numbers*

69

Introduction

• The complex numbers extend the range of real numbers such that the
equation

has a solution:

70

Complex Numbers

• Real

numbers

71

Complex Numbers

• Complex

numbers

72

Complex Numbers

• Complex

numbers

73

Complex Numbers

• Complex

numbers

74

Complex Numbers

• What is ‘i’?

75

Complex Numbers

76

• Geometrically it is a counterclockwise rotatiaon of 90°

Complex Numbers

77

• Geometrically it is a counterclockwise rotation of 90°

Complex Numbers

• Different ways to express a complex number

78

Complex Numbers

79

Complex Numbers

80

Complex Numbers

81

Complex Numbers

82

Rules

• Let 𝑧1 = 𝑎 + 𝑏i and 𝑧2 = 𝑐 + 𝑑i be complex numbers with 𝑎, 𝑏, 𝑐, 𝑑 ∈
ℝ

83

Rules

• Addition/subtraction is a simple
vector addition

84

Rotation

• To rotate a vector z = (𝑎, 𝑏) CCW around an angle 𝛼, we can multiply
it with the rotation matrix:

85

Rotation

• Or, we multiply it with a complex
number:

86

Rotation

• 2D rotations can be achieved with a rotation matrix or with the
multiplication of complex numbers of the form cos 𝛼 + 𝑖 sin(𝛼)

87

Quaternions*

88

Quaternions

• Maybe, we need to somehow extend the complex numbers such that
we use a further dimension:

89

Quaternions

• Maybe, we need to somehow extend the complex numbers such that
we use a further dimension:

• That’s what people thought in the past, but it does not work

90

Quaternions

• Actually, we need four dimensions to rotate in 3D!

91

Quaternions

“Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication
i2 = j2 = k2 = ijk = −1
& cut it on a stone of this bridge”

92

Quaternions

• Complex number:

93

Quaternions

• Complex number:

• Quaternion:

94

Quaternions

• Quaternion multiplication

• Not commutative

95

x 1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

𝑎

𝑏

𝑎𝑏

Quaternions

• Quaternion multiplication

• Not commutative

96

Quaternions

• Quaternion multiplication

97
(From: Berthold K. P. Horn, Closed-form solution of absolute orientation using unit quaternions)

Quaternions

• Product can also be written as a matrix, 𝑤1 = (𝑎, 𝑏, 𝑐, 𝑑)

98

Quaternions

• Product can also be written as a matrix, 𝑤1 = (𝑎, 𝑏, 𝑐, 𝑑)

99

Quaternions

• Product can also be written as a matrix, 𝑤1 = (𝑎, 𝑏, 𝑐, 𝑑)

100

Quaternions

• If 𝑤1 = (𝑎, 𝑏, 𝑐, 𝑑) has unit length, the matrix is orthogonal

101

Quaternions

• If 𝑤1 = (𝑎, 𝑏, 𝑐, 𝑑) has unit length, the matrix is orthogonal

102

Quaternions

• Dot product of two quaternions:

• Complex conjugate:

103

Quaternions

• Quaternion multiplication

104
(From: Berthold K. P. Horn, Closed-form solution of absolute orientation using unit quaternions)

Quaternions

• Quaternion multiplication

105
(From: Berthold K. P. Horn, Closed-form solution of absolute orientation using unit quaternions)

Quaternions

• Dot product of two quaternions:

• Complex conjugate:

106

Quaternions

• Non-commutative rule

107

Quaternions

• Non-commutative rule

108

Quaternions

• Non-commutative rule

109

Quaternions

• The composite product:

110

Quaternions

• The composite product:

111

Quaternions

• The composite product:

112

Quaternions

• The composite product:

113

Quaternions

• The composite product:

• Let’s assume

then the matrix 𝑸 is orthogonal

114

Quaternions

• The composite product:

• If the matrix 𝑸 is orthogonal then ഥ𝑸𝑇𝑸 is orthogonal, too:

115

Quaternions

• Multiplication with a quaternion and the complex conjugate
quaternion is equivalent with a rotation:

116
(From: Berthold K. P. Horn, Closed-form solution of absolute orientation using unit quaternions)

Rotation

Quaternions

• Applying a second rotation:

117
(From: Berthold K. P. Horn, Closed-form solution of absolute orientation using unit quaternions)

Rotations

• So again, instead of rotating a 3D point by defining rotation matrices,
it can be done with a multiplication of a unit length quaternion

118

Rotations

• Assume, we have a point 𝑝 and we want to ccw
rotate them around an axis 𝑞 with 𝑞 = 1
about the angle 𝛼

119

Rotations

• First, rewrite 𝑞 and 𝑝 as a quaternion:

120

Rotation

• Remember complex numbers:

121

Rotations

• It is slightly different

• First, we assign:

• Then, we determine

122

Rotations

• And we are done

• The complex parts of 𝑟𝑜𝑡 yield the coordinates

123

Rotations

• Assume 𝛼 = 60°

124

Rotations

• Assume 𝛼 = 60°

125

Rotations

• WHY!?!

• Why is this complicated computation necessary?

126

Rotations

• Imagine you rotate the objects continually (for example during
exploration)

• This means the current rotation matrix is multiplied with another
rotation matrix and so on:

• Due to numerical issues the rotation matrix may be not orthogonal at
the end, resulting in a weird behavior

127

Rotations

• What could you do?

• Probably fix the matrix, but how?

• Normalizing the columns may not result in an orthogonal matrix

• At the end it is not trivial to fix the matrix

128

Rotations

• Another application might be to interpolate between two rotation
matrices

• Linear interpolation of two rotation matrices is mostly not a rotation
matrix anymore

129

Rotations

• Using quaternions makes it easy to fix these problems

• It is easy to fix a quaternion such that it is a proper rotation again

• Two quaternions can be linearly interpolated after normalization, the
interpolated rotation is good enough

130

Quaternions

• Composition of rotations corresponds to multiplication of
quaternions

• Product of many orthogonal matrices may no longer be orthogonal,
just as the product of many unit quaternions may no longer be a unit
quaternion (limitations in precisions)

• Trivial to find the nearest unit quaternion, whereas it is quite difficult
to find the nearest orthogonal matrix

131
(From: Berthold K. P. Horn, Closed-form solution of absolute orientation using unit quaternions)

Quaternions

• Finally some code…

• Define a quaternion with an angle and a rotation axis

• Perform calculations

• Cast it back to a 4x4 matrix that can be used for our purposes

132

#include <glm/gtc/quaternion.hpp>
…

glm::quat rot = glm::angleAxis(glm::radians(45.f), glm::vec3(0.f, 0.f, 1.f));
…
trans=glm::mat4_cast(rot);

Questions???

13
3

