Computer Graphics

- Transformations

J.-Prof. Dr. habil. Kai Lawonn

Infroduction

* We know how to create objects, color them and/or give them a
detailed appearance using textures

* But they are static objects

* Could change their vertices and re-configuring their buffers each
frame to move them = cumbersome and costs quite some

processing power
 Better: transform an object by using (multiple) matrix objects

Infroduction

* Matrices are very powerful mathematical constructs that are very
important in computer graphics

* This lecture is about a small introduction to vectors and matrices

Vectors

Infroduction

* A vector has a direction and a magnitude (tuple of numbers)

* Vectors can have any dimension, but we usually work with
dimensions of 2 to 4

Z A

Y

Operations

* In GLSL vectors can be defined by vec2, vec3, and vec4
e GLSL offers simple scalar operations:

vec2 p = vec2(2,3);
p=p+2; //p=(4,5)
p-= 3; //p = (112)

vec2 q = -p; //q = (-1,-2)

Operations

* Addition of two vectors is defined as a component-wise addition:

YA
vec3 p = vec3(1,2,3);
vec3 g = vec3(4,5,6); _ _ 4)
vec3 res = p + q; //res = (5,7,9) Ui w (4
/BN
U= \2)

Operations

* Length of a vector = Pythagoras theorem

ol = VP F T

2
vec3 v = vec3(2,3,3); v= |3
float L = length(v); //L = sqrt(22) 3

/

s
/

Operations

* Normalizing of a vector = divide by length

vec3 Vv
vec3 n

vec3(2,3,3);
normalize(v); //n = v/|v|

Operations

* Dot product: component-wise multiplication and addition afterwards
* In this case three dimensional vectors

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6); UV-W — <’U, ’UJ> = V1W1 + V2W2 + V3W3

float d = dot(v,w); //d=4+10+18=32

Operations

* Dot product with the vector itself is the length squared

vev =0} 40 +0f = o]

Operations

* Dot product: also the lengths multiplied with cos of the angle
between both vector

vec3 v = vec3(1,2,3);

vec3 w = vec3(4,5,6); v-w = |[v]| - [Jw] - cos(a)
float d = dot(v,w); //d=4+10+18=32 V- W

float len_v = length(v); O = acCoSs

float len_w = length(w); ‘LU”. H1U||

float a = acos(d/(len_v*len w));

Operations

Multiplying two vectors results in a component-wise multiplication:

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6);
vec3 u = v*w; // = (4,10,18)

13

Operations

v-w = ||v| - [Jw] - cos(c)
e Useful conclusion: VW = ||’UH -k
L VW
Jv]]

14

Operations
* Relation:
ko
|v]]

cos(a) - [|w]|

15

Operations

* Why is this useful?
e Remember when we determined the orthogonal projection:

Operations

 Calculate the orthogonal projection of a point onto the plane

Operations

 Calculate the orthogonal projection of a point onto the plane
* Given is a point g on the plane and a normalized normal n,

* Task: project p orthogonally on the plane

N(lA

Operations

 Calculate the orthogonal projection of a point onto the plane
* Given is a point g on the plane and a normalized normal n,

* Task: project p orthogonally on the plane

n[,A N(}A

Operations

 Calculate the orthogonal projection of a point onto the plane
* Given is a point g on the plane and a normalized normal n,
* Task: project p orthogonally on the plane

p—ng - {(Ng, v)

oA oA -

=P—4q

Operations

* Example:

1 1/3
q= , no=|2/3
) (i)

Operations

* Example:

Operations

* Cross product of two vectors results in an
orthogonal vectors

vec3 v = vec3(1,2,3);
vec3 w = vec3(4,5,6);
vec3 u = cross(v,w); //u = (-3,6,-3)

VX W =

VW3 — U3W2
V3w — V1W3
V1Wo — VoaUN

Y

Operations

* The enclosing area can be determined, too

v XWw

A= lv xwl = [|vfl[Jw]] - sin(e)

24

Matrices

Infroduction

* A matrix is basically a rectangular array of numbers, symbols and/or
expressions

e Each individual item in a matrix is called an element of the matrix

* Example of a 2x3 matrix:

mat3x2 M = mat3x2(1,4,2,5,3,6); //column wise 1 2 3
//matnxm n,m € {2,3,4}, m # n M =
//matn, n € {2,3,4} 4 5 6

Infroduction

* Indexing
 Constructions

vec3 col@ = vec3(1, 2, 3);
vec3 coll = vec3(4, 5, 6);
vec3 col2 = vec3(7, 8, 9);

mat3 M = mat3(cold, coll, col2); //set columns
float M20 = M[2][@]; // = 7 (col2[@])
float M11 = M[1].y; // =5 (coll.y)

M

W N =

Sy Ot =

© OO0

Indexing

Matrices are indexed by:
* (Math)
(i,j) where i is the row and j is the column
i X j matrix (row,column)
* (GLSL)
[i][j] where i is the column and j is the row
i X j matrix (column,row)

28

Operations

e GLSL allows scalar operations:

1
mat2 M = mat2(1,2,3,4); M = (2
3

t2 N = M+2; N =
ma + (4

mat2 0 = M*2; (2
o_(4

Operations

e Of course standard operations:

mat2 M = mat2(1,2,3,4);
mat2 N = mat2(1,3,4,6);

mat2 O = M+N;

Operations

* Matrix-matrix multiplication

mat2 M = mat2(1,2,3,4);
mat2 N = mat2(1,3,4,6);

mat2 O = M*N;

31

Operations

* Matrix-vector multiplication

mat2 M = mat2(1,2,3,4);
vec2 v = vec2(1,3);

vec2 o = M*y;

-3 -3

-4-6

Operations

* |dentity matrix

mat3 Id = mat3(1);
vec2 v = vec2(1,2,3);

vec2 o = Id*v;

LN = WY = OO

o = O

— O O

Operations

* Scaling the vector v = (3,2) along the x-axis by 0.5 and along the y-
axis by 2:

vy A

o

y A

Operations fr

* The scaling operation is a non-uniform scale, because the scaling
factor is not the same for each axis

* If the scalar would be equal on all axes it would be called a uniform
scale

xy

Operations

e Constructing a transformation matrix that does the scaling

e |dentity matrix multiplied 1 with the corresponding vector element 2
change the 1s in the identity matrix to the scaling factor

* Represent the scaling variables as S = (s4, 55, S3), then define scaling
matrix: /81 0 0 O\ /:U\ /31:13\
0 s2 0 O] [y Sy

0 s3 S3%

0 0 Z
\0 0 o 1/ \1/ \ 1/

* For now ignore the last component (1)

Operations

e Additionally, we want to translate the vector after scaling

* The translating variables are represented as T = (t4, t,, t3), then
define the matrix:

/31 0 O tl\ /a:'\ /31:13——751\

0 s 0 19 | Y Soy + to
0 s3 13 z S3z + t3

o o ooo1)) T

Operations

* Example: v = (2,3,3),S = (2,3,2), T = (0,—7,—2)

/2
0
0

\0

o O Ww O

S NN OO

(2

(2-2+0\
3.3—-7
2.3—2

\ 1
[4)

2

4
\1/

Homogeneous Coordinates

* The w component of a vector is also known as a homogeneous
coordinate

* 3D vector from a homogeneous vector = divide x,y, zby w
* (Did not notice this because w component was 1.0)

* Advantages: allows to do translations on 3D vectors (without a w or
0 can’t translate)

39

Operations

* Next step: rotations
* A rotation in 2D or 3D is represented with an angle

* Angles could be in degrees or radians (whole circle has 360° or 2m in
radians)

180
angle in degrees = angle in radians -

-
: : : 7T
anglein radians = anglein degrees - ——

Rotations

* Rotation in 2D requires an angle and a direction (clock-wise (cw) /
counter-clock-wise (ccw))

* Suppose we want to ccw rotate a vector w = (x, y) around an angle
a A

Rotations

* First, compute v

42

Rotations

* First, compute v

w

w

w

x sin(a) 4 y cos(a)

-sin(a + 3)
- (sin(a) cos(B) + cos(a) sin(f))
- (sin(a) H’fjH | Cos(a/)ﬁ)

Rotations

* Then, compute u

u = ||w

— ||W

— ||W

- cos(a + B)
- (cos(a) cos(B) — sin(a) sin(5))
- (cos(a)— — Sm(oz)i)

|w]] |w]]

= x cos(a) — ysin(a)

Rotations

* All together:

u = x cos(a) — ysin(a)

v = xsin(a) + y cos(a)

Rotations

* All together:

cos(a) —sin(a)

Rotations o (il)

* Rotations in 3D are specified with an angle and a rotation axis
* The 2D rotation helps us to define 3D rotations:

i 0 sin(a) cos(a) —sin(a) 0 cos(a) 0 0

1 0 0 cos(a) 0 sin(w) cos(a) —sin(a)
R =10 cos(a) —sin(a) RY = 0 1 0 R? = | sin(a) cos(a)

—_ O O
v

Signs are different to ensure the ccw
rotation

Rotations

* Using the rotation matrices = position vectors can be rotate around
one of the three unit axes

 Also possible to combine them (e.g., first rotate around the x-axis,
then around the y-axis)

* This quickly introduces a problem called Gimbal lock = normally we
have three degrees of freedom, after rotating it may happen that two
axes coincide such that we loose one degree of freedom

Rotations

* Better solution is to rotate around an arbitrary unit vector n
* Instead of combining the rotation matrices

n? (1 — cos) + cos « ning (1 —cosa) —ngsina ning (1 — cosa) + no sin «
Ri(a) = | neng (1 — cosa) + ngsina n3 (1 — cosa) + cos a nong (1 — cosa) — ny sina
nsny (1 —cosa) —ngsina ngns (1 — cosa) + ny sin « ns (1 — cosa) + cos a
* Even this matrix does not completely prevent gimbal lock (but it gets
a lot harder)

* To truly prevent Gimbal locks, need quaternions (safer and
computationally friendly)

Combining Matrices

* True power from using matrices for transformations is the
combination of multiple transformations in a single matrix

* Say we have a vector (x,y, z) and we want to scale it by 2 and then
translate it by (1,2,3)

- Need a translation and a scaling matrix:

(1 0. 0 1\ (2 0 0 0y /2 0 0 1)
010 2] o2 00| (020 2
0013/ oo 20 [oo0 2 3
\0 0 0 1/ \o 00 1/ \o o0 1/

1 0 0 1 2 0 0 0 2
0 1 0 2 020 0] [0
Combining Matrices v ooi) Loo) o

* Note, first a translation and then a scale transformation
* Matrix multiplication is not commutative (order is important!)

* Right-most matrix is first multiplied with the vector - read the
multiplications from right to left

* When combining matrices it is advised to do:
e 1. scaling
* 2. rotations
* 3. Translations

* E.g., if you would first do a translation and then scale, the translation
vector would also scale!

S O N O

SN OO

_ W N =

Combining Matrices

* Running the final transformation matrix on our vector results in the
following vector:

/2 0 0 1\ (a:\ /233-—1\
0 2 0 2 yl| | 2y+2
0 0 2 3| |2 |[22+42
\0 00 1/ \1) \ 1)

GLM

Infroduction

* Now time to use transformations

* OpenGL does not have any form of matrix or vector knowledge built
In

* But, there is an easy-to-use and tailored-for-OpenGL mathematics
library called GLM

Infroduction

* GLM stands for OpenGL
Mathematics (header-only
library = only include no
linking and compiling)

* GLM can be downloaded:
https://glm.g-truc.net

GLM 0.9.9.8

g Groovounet released this on 13 Apr - 21 commits to master since this release

Features:

e Added GLM_EXT vector_intX* and GLM_EXT_vector_uintX* extensions
o Added GLM_EXT_matrix_intX* and GLM_EXT_matrix_uintX* extensions

Improvements:

¢ Added clamp, repeat, mirrorClamp and mirrorRepeat function to GLM_EXT_scalar_commond and GLM_EXT_vector_commond

extensions with tests

Fixes:

e Fixed unnecessary warnings from matrix_projection.inl #995

e Fixed quaternion slerp overload which interpolates with extra spins #996
e Fixed for glm:length using arch64 #992

¢ Fixed singularity check for quatLookAt #770

v Assets 4

@ gIm-0.9.9.8.7z
@ glm-0.9.9.8.zip
[7) source code (zip)

Eﬂ Source code (tar.gz)

55

3.27 MB

541 MB

https://glm.g-truc.net/0.9.9/index.html

Infroduction

cmake
* Copy the root directory (glm) of the header files :Im
into your includes folder test

util

| .appveyor.yml|
Projects » Computer Graphics » resources » include ° gitignore

A

| .travis.yml
|:| Name - CMakelists
glad - copying
| manual.md
GLFW | readme.md
KHR

glm

Infroduction

* Most of GLM’s functionality can be found in only 3 headers files:

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type ptr.hpp>

57

Infroduction

* First, translate a vector of (1,0,0) by (1,1,0)

* (Note that we define it as a glm::vec4 with its homogenous
coordinate set to 1.0):

glm::vecd vec(l.0f, 0.0f, 0.0f, 1.0f);
glm: :mat4 trans = glm::mat4(1.0); // not an identity matrix per default

trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
vec = trans * vec;
std::cout << vec.x << vec.y << vec.z << std::endl;

I1INote: glm: :mat4 trans = glm::mat4(1.9);
this is different than in the book!!!

58

Infroduction

glm::vecd vec(l.0f, 0.0f, 0.0f, 1.0f);
glm: :mat4 trans = glm::mat4(1.0); // not an identity matrix per default

trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
vec = trans * vec;
std::cout << vec.x << vec.y << vec.z << std::endl;

* First define a vector named vec using GLM'’s built-in vector class
* Next define a mat4 named trans (it is set as the identity matrix)

* Next create a transformation matrix by passing trans to the glm::translate
function, together with a translation vector (given matrix is multiplied with
a translation matrix and the resulting matrix is returned)

* Then, multiply vec by the transformation matrix and output the result

Infroduction

* Now, translate, scale, and rotate the textured wall from last lecture
* First, rotate the wall by 90 degrees counter-clockwise
* Then, scale it by 0.5, thus making it twice as small

* Finally, translate it:

glm::mat4 trans = glm::mat4(1.0);

trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));

trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));

Infroduction

glm::mat4 trans = glm::mat4(1.0);

trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));

trans = glm::translate(trans, glm::vec3(1l.0f, 1.0f, 0.0f));

* GLM expects its angles in radians = convert the degrees to radians using
glm::radians

* Note 1: Textured rectangle is on the XY plane = rotate around the Z-axis

 GLM automatically multiplies the matrices together (resulting in one
transformation matrix)

* Note 2: Read the transformations from bottom to top!!!

Infroduction

* Transformation matrix should be passed to the shader

* So, use a mat4 uniform and multiply the position vector by the
matrix

#version 330 core

layout (location = @) in vec3 aPos;
layout (location = 1) in vec3 aColor;
uniform mat4 transform;

out vec2 TexCoord;

void main()

{

gl Position = transform*vec4(aPos, 1.0);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);

}

Infroduction

GLSL also has mat2 and mat3 types that allow for swizzling-like
operations just like vectors.

mat3 Matrix;
Matrix[1].yzx = vec3(3.0, 1.9, 2.0);

63

Infroduction

* Still need to pass the transformation matrix to the shader though:

unsigned int transformlLoc = glGetUniformLocation(ourShader.ID, "transform");
glUniformMatrix4fv(transformLoc, 1, GL FALSE, glm::value ptr(trans));

* 1. Is the uniform’s location
2. tells OpenGL how many matrices are send = 1

3. asks if the matrix should be transposed (swap the columns and rows, no
as GLM gives the right matrix)

e 4. is the actual matrix data, but GLM stores their matrices not in the exact
way that OpenGlL likes to receive them so transform them with GLM’s built-

in function value_ptr

FS5...

...hicel

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, glm::radians(90.06f), glm::vec3(0.0, 0.0, 1.9));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));

65

FS5...

...hice, too!
But be careful with the order!

glm::mat4 trans = glm::mat4(1.0);

trans
trans
trans

glm: :rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
glm: :translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));

66

Rotation

* To rotate the wall over time use this code in the game loop
* (Needs to update the matrix each render iteration):

glm::mat4 trans = glm::mat4(1.0);
trans = glm::rotate(trans, (float)glfwGetTime(), glm::vec3(0.0, 0.0, 1.0));

glUniformMatrix4fv(transformLoc, 1, GL FALSE, glm::value_ptr(trans));

FS5...

... rotating beauty!

68

Complex numbers*

Infroduction

* The complex numbers extend the range of real numbers such that the
equation

2 +1=0

has a solution:

Complex Numbers

e Real
numbers

> R

Complex Numbers
AC

* Complex
numbers

> R

Complex Numbers

* Complex AC
numbers O (-7307 yo)

> R

Complex Numbers

* Complex
numbers

AC

o (Z0,Y0) = To

190

> R

Complex Numbers

* Whatis i'?

Complex Numbers

 Geometrically it is a counterclockwise rotatiaon of 90°

A

Complex Numbers

 Geometrically it is a counterclockwise rotation of 90°

A

Qia

Complex Numbers

* Different ways to express a complex number

Complex Numbers

Yo

AC

o (Z0,Y0) = X0

190

> R

79

Complex Numbers
AC

Yo o (Z0,Y0) = o + iyo

(r,) = r(cos(a) + i sin(a))

> R

Complex Numbers

Yo

AC

o (Z0,%0) = To + Yo
(r,) — r(cos(a) + isin(a))
S

eioe

> R

Complex Numbers

Yo

AC

o (Z0,Y0) = Zo

(r, o) — re’®

190

> R

Rules

* LlLetzy = a+ biand z, = ¢ + di be complex numbers with a, b, c,d €

z1+2z=(a+bi))+ (c+di)=(a+c)+ (b+d)i

(a+bt) — (c+di) = (a—c)+ (b—d)i

2120 = (a4 bi) - (c+ di) = ac + adi + bci + bdi® = (ac — bd) + (ad + be)i

21 (a+bi)(c—di) ac+bd bc—ad.
(e +di)

c+di)(c—di) 2+d® 2 tdz

Rules

» Addition/subtraction is a simple
vector addition

o = (Ca

214+ 22 = (a+ ¢, b+ d)

d) =c+di

21 = (a,b) = a+ bi

>» R

Rotation

* To rotate a vector z = (a, b) CCW around an angle a, we can multiply
it with the rotation matrix:

(cos(a) —sin(a)) L (a cos(a) — bsin(a)>

sin(ar) cos(a) asin(a) + bcos(a)

(cos(a) —Sin(oz)) L (a cos(ar) — bsin(a))

sin(a) cos(a) ~ \asin(a) + bcos(a)

Rotation

* Or, we multiply it with a complex A
number:

z-w = (a—+bi)- (cos(a) +isin(a))
= (acos(a) — bsin(a)) + (asin(«a) + bcos(a))i

w = cos(a) + i sin(a)

z=(a,b) =a+bi

>» R

86

Rotation

e 2D rotations can be achieved with a rotation matrix or with the
multiplication of complex numbers of the form cos(a) + i sin(a)

Quaternions*

Quaternions

* Maybe, we need to somehow extend the complex numbers such that
we use a further dimension:

z=a-+1b+ jc

Quaternions

* Maybe, we need to somehow extend the complex numbers such that
we use a further dimension:

z=a-+1b+ jc

* That’s what people thought in the past, but it does not work

Quaternions

* Actually, we need four dimensions to rotate in 3D!

z=a-+1b+ jc+ kd

Quaternions

“Here as he walked by

on the 16th of October 1843
Sir William Rowan Hamilton | on the It eoE e
in a flash of genius discovered S willian Rowan Peirsesn
the fundamental formula for e e et
quaternion multiplication "L | B
i?=j2=k?=ijk=-1

& cut it on a stone of this bridge”

g ——r

21 T W e
AN NN "A'A ‘\"‘?ﬁ"',‘ \ .
5 S - w2
2 T f : e W
. ' %

92

Quaternions

* Complex number:

z=a+ib, i’ =—1

Quaternions

* Complex number:

z=a+ib, i’ =—1

 Quaternion:
w=a-+1b+ jc+ kd

2= 2= k2= 1
ik = —1

Quaternions

* Quaternion multiplication

* Not commutative

ab

Quaternions

* Quaternion multiplication

* Not commutative

oIS
i e

Quaternions

* Quaternion multiplication

a1 + ’Lbl —|—jCl -+ kdl)(ag -+ Zbg -+ jCQ + kdg)

ai1ao — blbg — C1Co — dldg)

w1 - we = (
(
+ i(a1by + bras + c1dy — dqco)
- j(arca — bida + crag + dib2)
+ k(a1ds + bico — c1bs + dqas)

Quaternions

wy - W2 = (a1a2 — b1by —c1c9 — d1d2)
+ i(a1bs + bras + c1ds — dycs)
+ j(aica — bidy + craz + dybs)
+ k(ards + bica — c1by + dyas)

* Product can also be written as a matrix, w; = (a, b,c,d)

/a, —b —c —d
b —d c
w1 - Wy — c a —b W2
\d —c b a
N— ——

W,

w1 - Wy = (alag — blbg — C1Co — dldg)
. + i(a1be + brag + c1de — dica)
QUOTernlonS —|—j(a1(32—bld2—|—61a2—|—d1b2)

+ k(aldg + 6162 — Clbg + dlaz)

* Product can also be written as a matrix, w; = (a, b,c,d)

/a —b —c —d

Wi - Wy = "LUQ:Wl"LUQ

Wo «- W1 = "LUQZWl-’LUQ

Quaternions

* Product can also be written as a matrix, w; = (a, b,c,d)

w1 - W2

w9 - W1

a —d c
d a —b
—c_ b a
—b —c —d
a d —c
—d a b
c —b a

w1 - wg = (ayag — biby — c1c0 — dyds)
+ i(a1bs + bras + c1ds — dycs)
+ j(arco — byds + cras + dibs)
+ k(ards + bica — c1by + dyas)

'w2:W1'w2

-'wg:Wl-wQ

100

/a —b —c —d\

. b a —-d c
Quaternions W=, 4 o« b
\d —c b a/

* Ifw; = (a, b,c,d) has unit length, the matrix is orthogonal

a —b —c —d /a b C d\

b a —-d c —-b a d -—c

c d a —b —c —d a b
d —c b a \—d c —b a/
” 0 0 0
. 0 » 0 O 2 2 2 2 2
=10 o 2 ol "=+ +d
0 0 0 r*)

Quaternions W=,

* Ifw; = (a, b,c,d) has unit length, the matrix is orthogonal

a —b —c —d\ (a, b C d
— = b «a —C —-b a —d ©c
T
WW™ = ¢c —d a b —c d a —b
d ¢ —b a} \—d —c b a
2 0 0 0\
10 ¢ 0 0 2 2, 12, 2 2
=10 o0 2 ol "=+ +d
0 0 0 r?)

—b —c —d\

a

—d

d
a
—b

—C

b

Quaternions

* Dot product of two quaternions:

w1 o wo = (a1 + by + je1 + kdy) o (ag + b + jeo + kds)
— a1ao + blbg + C1Co + dldg

 Complex conjugate:

w=a-+1b+ jc+ kd
w* =a—1b— jc—kd

wy - we = (a1 + by + jeg + kdy)(az + by + jeo + kds)
= (a1a2 — b1by — c1c0 — d1d2)
+ i(a1b2 + bras + c1dy — dlcg)

QUOTernio nS + j(aico — bids + cras + dybs)

+ k(aldg + blcg — Clbg + dlag)

* Quaternion multiplication

wi - wy = (a1 + b1 + jer + kdy)(ar — iby — jeg — kdy)
= (a1a1 4+ b1by + c1c1 + didy)

+i(—a1by + bray — c1dy + dicy)

+ j(—ai1c1 + bidy + c1a1 — dyiby)

+ k(—a1dy — bic1 + c1b1 + draq)

wy - we = (a1 + by + jeg + kdy)(az + by + jeo + kds)
= (a1a2 — b1by — c1c0 — d1d2)
+ i(a1by + bras + c1ds — dico)

QUOTernio nS + j(aico — bids + cras + dybs)

+ k(aldg + blcg — Clbg + dlag)

* Quaternion multiplication

= (a1 +iby + je1 + kdy) (a1 — iby — jeq — kdy)
= (a1a1 + b1b1 + c1c1 + didy)

-i(—a1by +bra; — c1dy +dicy)

- j(—ai1c1 4+ brdy + craq — diby)

- k(—a1dy — bicr + b1 + diaq)

= (a1a1 + b1b1 + c1c1 + didy)

Quaternions

* Dot product of two quaternions:

w1 o wo = (a1 + by + je1 + kdy) o (ag + b + jeo + kds)
— a1ao + blbg + C1Co + dldg

 Complex conjugate:

w=a+1b+ jc+ kd ww* — 1 O W
w* =a—1b— jc—kd

/a —b —c —d\

. b a —-d c
Quaternions W1, 4 o -

\d —c b a/

* Non-commutative rule

w1°’w2:W1-w2

w2’w1:W1‘w2

Quaternions

* Non-commutative rule

w1°’w2:W1-w2

w2’w1:W1‘w2

wi - wy = W1 - ws

/a —b

b a
c d

\d —cC

—c —d\
—d c
a —b

b a/

Quaternions

* Non-commutative rule

-’U)zzwl-’wg

-w1:W1-w2

*"IUQ:W?'QUQ

x _ xarl
"U)l—Wl 'w2

b a —d
c d a
\d —c b

Quaternions

* The composite product:

A

/

qrq

*

wi - wy = W1 - ws

wy - wi = W1 - ws

wi - wy = W1 - ws

Quaternions wy - wi =W - w,

* The composite product:

/

r=qrq”
= (Qr)q”

wi - wy = W1 - ws

Quaternions wy - wi =W - w,
* The composite product:

r = qfr'q*
= (Qr)q”
= Q" (Qr)

wi - wy = W1 - ws

Quaternions wy - wi =W - w,

* The composite product:

Quaternions

* The composite product:

e Let’s assume

qq¢" =1

then the matrix Q is orthogonal

Quaternions

* The composite product:

/- @ Q)
e If the matrix Q is orthogonal then Q” Q is orthogonal, too:

QTQ)(Q"Q)" = (QTQ)(Q"Q)
-Q"QQ" Q
g

Quaternions

* Multiplication with a quaternion and the complex conjugate
guaternion is equivalent with a rotation:

Rotation

Quaternions

* Applying a second rotation:

r" = pr'p*
= p(qrq*)p”
= (pg)r(¢"p")
= (pq)r(pq)”

Rotations

* So again, instead of rotating a 3D point by defining rotation matrices,
it can be done with a multiplication of a unit length quaternion

Rotations

* Assume, we have a point p and we want to ccw
rotate them around an axis g with ||g|| = 1
about the angle a

y4

>

Rotations

* First, rewrite g and p as a quaternion:

1
p=|1]|=1i+15+ 1k
1

2 :>2'+2'+1k
/L — —_
3' T3/ 73

Rotation

C
* Remember complex numbers: A

z-w = (a—+bi)- (cos(a) +isin(a))
= (acos(a) — bsin(a)) + (asin(a) + beos(a))i

w = cos(a) + i sin(a)

z=(a,b) =a+bi

>» R

121

1
p= (1) = 1i+1j + 1k
1

Rotations 0:,

1
1= 3 3' T3/ 73

NN

* It is slightly different
* First, we assign:

q < cos(a/2) +sin(a/2) - ¢
 Then, we determine

rot=q-p-q

rot=q-p-q"
Rofations

* And we are done
* The complex parts of rot yield the coordinates

Rotations

e Assume a = 60°

q < cos(a/2) + sin(a/2) - q

V3 o1 1 1
: R _k
q 2’+¥+3“+6

p=1li+1j+ 1k

. V3 1. 1. 1

S A R Sy ¥
¢ =5 73'"73/ 7%

q

|

1
1
1
2
2
1

|

p():uﬂjﬂk

:>2'+2'+1k
_Z — —
3' T3/ 73

1
+ i+ 57+ <k

\/§11.
2

. 4 373/
Rotations =104 1j 4 1k

, V3 1.1 L

T T3 8 G

e Assume a = 60°

., 5 1 V3. V3 \/§
pat =g+ (g i g+
1 1
gt =0 19 4+ 3 19 —3 .
q-p-q +18(+\f)%+18(V3)j + 9
19 + 3v/3

1
rot = T 19 — 33
14

Rotations

e WHY!?!
* Why is this complicated computation necessary?

Rotations

* Imagine you rotate the objects continually (for example during
exploration)

* This means the current rotation matrix is multiplied with another
rotation matrix and so on:

ch'r‘:Ql'Q2'---'Qn

* Due to numerical issues the rotation matrix may be not orthogonal at
the end, resulting in a weird behavior

Rotations

* What could you do?

* Probably fix the matrix, but how?

* Normalizing the columns may not result in an orthogonal matrix
e At the end it is not trivial to fix the matrix

Rotations

* Another application might be to interpolate between two rotation
matrices

* Linear interpolation of two rotation matrices is mostly not a rotation
matrix anymore

Rotations

* Using quaternions makes it easy to fix these problems
* It is easy to fix a quaternion such that it is a proper rotation again

* Two quaternions can be linearly interpolated after normalization, the
interpolated rotation is good enough

Quaternions

* Composition of rotations corresponds to multiplication of
guaternions

* Product of many orthogonal matrices may no longer be orthogonal,
just as the product of many unit quaternions may no longer be a unit
guaternion (limitations in precisions)

* Trivial to find the nearest unit quaternion, whereas it is quite difficult
to find the nearest orthogonal matrix

Quaternions

* Finally some code...

#include <glm/gtc/quaternion.hpp>

glm::quat rot = glm::angleAxis(glm::radians(45.f), glm::vec3(0.f, 0.f, 1.f));
trans=glm: :mat4 cast(rot);
* Define a quaternion with an angle and a rotation axis

* Perform calculations
* Cast it back to a 4x4 matrix that can be used for our purposes

QO

Q
§
s
stion
g7
PP

